cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A069894 Centered square numbers: a(n) = 4*n^2 + 4*n + 2.

Original entry on oeis.org

2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, 1090, 1226, 1370, 1522, 1682, 1850, 2026, 2210, 2402, 2602, 2810, 3026, 3250, 3482, 3722, 3970, 4226, 4490, 4762, 5042, 5330, 5626, 5930, 6242, 6562, 6890, 7226, 7570, 7922, 8282
Offset: 0

Views

Author

Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 10 2002

Keywords

Comments

Any number may be substituted for y to yield similar sequences. The number set used determines values given (i.e., integer yields integer). All centered square integers in the set of integers may be found by this formula.
1/2 + 1/10 + 1/26 + ... = (Pi/4)*tanh(Pi/2) [Jolley]. - Gary W. Adamson, Dec 21 2006
For n > 0, a(n-1) is the number of triples (w, x, y) having all terms in {0, ..., n} and min(|w - x|, |x - y|) = 1. - Clark Kimberling, Jun 12 2012
Consider the primitive Pythagorean triples (x(n), y(n), z(n) = y(n) + 1) with n >= 0, and x(n) = 2*n + 1, y(n) = 2*n*(n + 1), z(n) = 2*n*(n + 1) + 1. The sequence, a(n), is 2*z(n). - George F. Johnson, Oct 22 2012
Ulam's spiral (SE corner). See the Wikipedia link. - Kival Ngaokrajang, Jul 25 2014
Conference matrix orders (A000952) of the form n-1 is a perfect square are all in this sequence. All values less than 1000 are conference matrices except for 226 which is still an open question (Balonin & Seberry 2014). - Colin Hall, Nov 21 2018
For n > 0, a(n-1) is the number of maximum number of regions into which the plane can be divided using n convex quadrilaterals. Related: A077588 A077591. - Keyang Li, Jun 17 2022

Examples

			If y = 3, then 81 + 144 = 225; if y = 4, then 12^2 + 16^2 = 20^2; 7^2 + 24^2 = 25^2 = 15^2 + 20^2.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176.

Crossrefs

Programs

Formula

(y*(2*x + 1))^2 + (y*(2*x^2 + 2*x))^2 = (y*(2*x^2 + 2*x + 1))^2, where y = 2. If a^2 + b^2 = c^2, then c^2 = y^2*(4*x^4 + 8*x^3 + 8*x^2 + 4*x + 1). Also 2*A001844.
a(n) = (2*n + 1)^2 + 1. - Vladimir Joseph Stephan Orlovsky, Nov 10 2008 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = 8*n + a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Aug 08 2010
From George F. Johnson, Oct 22 2012: (Start)
G.f.: 2*(1 + x)^2/(1 - x)^3, a(0) = 2, a(1) = 10.
a(n+1) = a(n) + 4 + 4*sqrt(a(n) - 1).
a(n-1) * a(n+1) = (a(n)-4)^2 + 16.
a(n) - 1 = (2*n+1)^2 = A016754(n) for n > 0.
(a(n+1) - a(n-1))/8 = sqrt(a(n) - 1).
a(n+1) = 2*a(n) - a(n-1) + 8 for n > 2, a(0)=2, a(1)=10, a(2)=26.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2) for n > 3; a(0)=2, a(1)=10, a(2)=26, a(3)=50.
a(n) = A033996(n) + 2 = A002522(2n + 1).
a(n)^2 = A033996(n)^2 + A016825(n)^2. (End)
a(n) = A001105(n) + A001105(n+1). - Bruno Berselli, Jul 03 2017
E.g.f.: 2*(1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Nov 21 2018
a(n) = A261327(4*n+2). - Paul Curtz, Dec 23 2021
a(n) = 2*A001844(n) = 4*A000217(n) + 2*A002061(n+1). - Klaus Purath, Aug 13 2025

Extensions

Edited by Robert G. Wilson v, Apr 11 2002
Offset corrected by Charles R Greathouse IV, Jul 25 2010

A077591 Maximum number of regions into which the plane can be divided using n (concave) quadrilaterals.

Original entry on oeis.org

1, 2, 18, 50, 98, 162, 242, 338, 450, 578, 722, 882, 1058, 1250, 1458, 1682, 1922, 2178, 2450, 2738, 3042, 3362, 3698, 4050, 4418, 4802, 5202, 5618, 6050, 6498, 6962, 7442, 7938, 8450, 8978, 9522, 10082, 10658, 11250, 11858, 12482, 13122, 13778
Offset: 0

Views

Author

Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002

Keywords

Comments

Sequence found by reading the segment (1, 2) together with the line from 2, in the direction 2, 18, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 05 2011
For a(n) > 1, a(n) are the numbers such that phi(sum of the odd divisors of a(n)) = phi(sum of even divisors of a(n)). - Michel Lagneau, Sep 14 2011
Apart from first term, subsequence of A195605. - Bruno Berselli, Sep 21 2011
Engel expansion of 1F2(1; 1/2, 1/2; 1/8). - Benedict W. J. Irwin, Jun 21 2018
Let f(n) = 4*n^2 - 5, then (x, y, z) = (a(n+1), -f(n), -f(n + 1)) are solutions of the Diophantine equation x^3 + 4*y^3 + 4*z^3 = 512. - XU Pingya, Apr 25 2022

Examples

			a(2) = 18 if you draw two concave quadrilaterals such that all four sides of one cross all four sides of the other.
		

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..2000], n->8*n^2 - 8*n + 2)); # Muniru A Asiru, Jan 29 2018
  • Maple
    A077591:=n->`if`(n=0, 1, 8*n^2 - 8*n + 2); seq(A077591(n), n=0..50); # Wesley Ivan Hurt, Mar 12 2014
  • Mathematica
    Table[2*(4*n^2 - 4*n + 1), {n,0,50}] (* G. C. Greubel, Jul 15 2017 *)
  • PARI
    isok(n) = (sod = sumdiv(n, d, (d%2)*d)) && (sed = sumdiv(n, d, (1 - d%2)*d)) && (eulerphi(sod) == eulerphi(sed)); \\ from Michel Lagneau comment; Michel Marcus, Mar 15 2014
    

Formula

a(n) = 8*n^2 - 8*n + 2 = 2*(2*n-1)^2, n > 0, a(0)=1.
Proof from Keyang Li, Jun 18 2022: (Start)
Represent the configuration of n concave quadrilaterals by a planar graph with a node for each vertex of the quadrilaterals and for each intersection point. Let there be v_n nodes and e_n edges. By Euler's formula for planar graphs, a(n) = e_n - v_n + 2. When we go from n to n+1 quadrilaterals, each side of the new quadrilateral can meet each side of the existing quadrilaterals at most 4 times, so Dv_n := v_{n+1} - v_n <= 4*4n = 16n.
Each of these intersection points increases the number of edges in the graph by 2, so De_n := e_{n+1} - e_n = 4 + 2*Dv_n, Da_n := a(n+1) - a(n) = 4 + Dv_n <= 4+16*n.
These upper bounds can be achieved by taking n interwoven concave quadrilaterals (for n=1,2,3 see the attached Keyang Li links), and we achieve a(n) = 8n^2 - 8n + 2 (and v_n = 8n^2 - 4n, e_n = 4n*(4n-3)) for n > 0. QED (End)
For n > 0: A071974(a(n)) = 2*n+1, A071975(a(n)) = 2. - Reinhard Zumkeller, Jul 10 2011
a(n) = 1 + A069129(n), if n >= 1. - Omar E. Pol, Sep 05 2011
a(n) = 2*A016754(n-1), if n >= 1. - Omar E. Pol, Sep 05 2011
G.f.: (1 - x + 15*x^2 + x^3)/(1-x)^3. - Colin Barker, Feb 23 2012
E.g.f.: (8*x^2 + 2)*exp(x) - 1. - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = G/2, where G is Catalan constant (A006752).
Product_{n>=1} (1 + 1/a(n)) = cosh(Pi/sqrt(8)).
Product_{n>=1} (1 - 1/a(n)) = cos(Pi/sqrt(8)). (End)

A096777 a(n) = a(n-1) + Sum_{k=1..n-1}(a(k) mod 2), a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 53, 62, 71, 81, 92, 103, 115, 128, 141, 155, 170, 185, 201, 218, 235, 253, 272, 291, 311, 332, 353, 375, 398, 421, 445, 470, 495, 521, 548, 575, 603, 632, 661, 691, 722, 753, 785, 818, 851, 885, 920, 955, 991, 1028
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 09 2004

Keywords

Comments

a(n) = a(n-1) + (number of odd terms so far in the sequence). Example: 15 is 11 + 4 odd terms so far in the sequence (they are 1,3,5,11). See A007980 for the same construction with even integers. - Eric Angelini, Aug 05 2007
A016789 and A032766 give positions where even and odd terms occur; a(3*n)=A056106(n); a(3*n-1)=A077588(n); a(3*n-2)=A056108(n). - Reinhard Zumkeller, Dec 29 2007

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 11*x^6 + 15*x^7 + 20*x^8 + ... - _Michael Somos_, Apr 18 2020
		

Crossrefs

Programs

Formula

a(n+1) - a(n) = A004396(n).
a(n) = floor(n/3) * (3*floor(n/3) + 2*(n mod 3) - 1) + n mod 3 + 0^(n mod 3). - Reinhard Zumkeller, Dec 29 2007
a(n) = floor((n-2)^2/3) + n. - Christopher Hunt Gribble, Mar 06 2014
G.f.: -x*(x^4+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Mar 07 2014
Euler transform of finite sequence [2, 0, 1, 1, 0, 0, 0, -1]. - Michael Somos, Apr 18 2020
a(n) = (10 + 3*n*(n - 1) - A061347(n+1))/9. - Stefano Spezia, Sep 22 2022

A084684 Degrees of certain maps (see Comments and Formulas for more precise definitions).

Original entry on oeis.org

1, 2, 4, 8, 13, 20, 28, 38, 49, 62, 76, 92, 109, 128, 148, 170, 193, 218, 244, 272, 301, 332, 364, 398, 433, 470, 508, 548, 589, 632, 676, 722, 769, 818, 868, 920, 973, 1028, 1084, 1142, 1201, 1262, 1324, 1388, 1453, 1520, 1588, 1658, 1729, 1802, 1876, 1952, 2029, 2108, 2188, 2270, 2353, 2438, 2524, 2612, 2701, 2792, 2884, 2978, 3073, 3170, 3268, 3368, 3469, 3572
Offset: 0

Views

Author

N. J. A. Sloane, Jul 16 2003

Keywords

Comments

Number of binary strings of length n with no substrings equal to 0001, 1001, or 1011. - R. H. Hardin, Aug 14 2009
Degree sequence d(n) of recursion x(n+1)+x(n)+x(n-1) = b + c(n)/x(n) where c(n) = c(n-1) + c(n-2) - c(n-3) and x(n) = u(n)/f(n) and x(n-1) = v(n)/f(n) in homogeneous coordinates (projectivization). Denoted by sigma_1 on page 32 of Hiertarinta and Viallet (2000). - Michael Somos, Jan 04 2022

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 13*x^4 + 20*x^5 + 28*x^6 + 38*x^7 + ...
		

Crossrefs

Cf. A064863, A056107 (bisection), A077588 (bisection).
Cf. also A001651, A002620, A122958.

Programs

Formula

a(n) = (6*n^2 + 9 - (-1)^n)/8. - Charles R Greathouse IV, Sep 10 2014
G.f.: ( 1+2*x^3 ) / ( (1+x)*(1-x)^3 ). - R. J. Mathar, Sep 11 2014
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Colin Barker, Sep 11 2014
a(n) = a(-n) for all n in Z. - Michael Somos, Feb 08 2015
a(n) - a(n-1) = A001651(n), a(n+1) - a(n-1) = 3*n for all n in Z. - Michael Somos, Feb 08 2015
(a(n) - a(n+1))^2 - (2*a(n) + a(n+1)) + 4 = 3*n/2 + 1 for all even n in Z. - Michael Somos, Feb 08 2015
0 = -4 + a(n)*(-a(n+1) + a(n+2)) + a(n+1)*(+3 + a(n+1) - a(n+2)) for all n in Z. - Michael Somos, Feb 08 2015
A122958(n-1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n for all n>1. - Michael Somos, Feb 08 2015
a(n) = 2*a(n-1) - 3*A002620(n-2) for all n in Z. - Michael Somos, Dec 27 2021
a(n) = 3*(a(n-1) + a(n-4)) - 2*(a(n-2) + a(n-3)) - a(n-5) for all n in Z. - Michael Somos, Jan 04 2022

Extensions

More terms from Charles R Greathouse IV, Sep 10 2014
Edited by N. J. A. Sloane, Jan 04 2022

A242658 a(n) = 3*n^2 - 3*n + 2.

Original entry on oeis.org

2, 2, 8, 20, 38, 62, 92, 128, 170, 218, 272, 332, 398, 470, 548, 632, 722, 818, 920, 1028, 1142, 1262, 1388, 1520, 1658, 1802, 1952, 2108, 2270, 2438, 2612, 2792, 2978, 3170, 3368, 3572, 3782, 3998, 4220, 4448, 4682, 4922, 5168, 5420, 5678, 5942, 6212, 6488, 6770, 7058, 7352
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2014

Keywords

Comments

An exercise in Smith (1950), my secondary school algebra book.
For n > 0, also the number of (not necessarily maximal) cliques in the (n-1)-triangular grid graph. - Eric W. Weisstein, Nov 29 2017

References

  • C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 429, Example 2(i).

Crossrefs

A077588 is the same except for the initial term.

Programs

  • Magma
    [3*n^2 - 3*n + 2: n in [0..70]]; // Vincenzo Librandi, Sep 05 2016
    
  • Mathematica
    Table[3 n^2 - 3 n + 2, {n, 0, 100}] (* Vincenzo Librandi, Sep 05 2016 *)
    LinearRecurrence[{3, -3, 1}, {2, 8, 20}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
    CoefficientList[Series[-2 (1 - 2 x + 4 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
  • PARI
    a(n) = 3*n^2-3*n+2 \\ Altug Alkan, Sep 05 2016

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*(-4*x^2 + 2*x - 1)/(x - 1)^3. (End)
E.g.f.: exp(x)*(2 + 3*x^2). - Stefano Spezia, Dec 27 2021
a(n) = A002378(n) + A002378(n-1) + A002378(n-2). - Peter Bala, Jun 11 2024

A004538 a(n) = 3*n^2 + 3*n - 1.

Original entry on oeis.org

-1, 5, 17, 35, 59, 89, 125, 167, 215, 269, 329, 395, 467, 545, 629, 719, 815, 917, 1025, 1139, 1259, 1385, 1517, 1655, 1799, 1949, 2105, 2267, 2435, 2609, 2789, 2975, 3167, 3365, 3569, 3779, 3995, 4217, 4445
Offset: 0

Views

Author

N. J. A. Sloane, Eric T. Lane (ERICLANE(AT)UTCVM.UTC.EDU)

Keywords

Comments

Numbers k such that (4*k + 7)/3 is a square. - Bruno Berselli, Sep 11 2018

Crossrefs

First differences of A033445.

Programs

  • Magma
    [3*n^2 + 3*n -1: n in [0..50]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[5*Sum[k^4,{k,1,n}]/Sum[k^2,{k,1,n}], {n,1,20}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[3n^2+3n-1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{-1,5,17},40] (* Harvey P. Dale, Jan 18 2019 *)
  • PARI
    a(n)=3*n^2+3*n-1 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

From Alexander Adamchuk, Apr 12 2006: (Start)
a(n) = 5 * Sum_{k=1..n} k^4 / Sum_{k=1..n} k^2, n > 0.
a(n) = 5 * A000538(n) / A000330(n), n > 0. (End)
a(n) = a(n-1) + 6*n with a(0)=-1. - Vincenzo Librandi, Nov 18 2010
From G. C. Greubel, Sep 10 2018: (Start)
G.f.: (-1 + 8*x - x^2)/(1 - x)^3.
E.g.f.: (-1 + 6*x + 3*x^2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = ( psi(1/2+sqrt(21)/6) - psi(1/2-sqrt(21)/6)) /sqrt(21) = -0.6286929... R. J. Mathar, Apr 24 2024

A081576 Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 3, 0, 1, 7, 20, 21, 5, 0, 1, 9, 38, 75, 55, 8, 0, 1, 11, 62, 189, 275, 144, 13, 0, 1, 13, 92, 387, 905, 1000, 377, 21, 0, 1, 15, 128, 693, 2305, 4256, 3625, 987, 34, 0, 1, 17, 170, 1131, 4955, 13392, 19837, 13125, 2584, 55
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2) where a(0) = 0 and a(1) = 1.

Examples

			Square array begins as:
  0, 1,  1,   2,    3,    5,     8, ... A000045;
  0, 1,  3,   8,   21,   55,   144, ... A001906;
  0, 1,  5,  20,   75,  275,  1000, ... A030191;
  0, 1,  7,  38,  189,  905,  4256, ... A099453;
  0, 1,  9,  62,  387, 2305, 13392, ... A081574;
  0, 1, 11,  92,  693, 4955, 34408, ... A081575;
  0, 1, 13, 128, 1131, 9455, 76544, ...
The antidiagonal triangle begins as:
  0;
  0, 1;
  0, 1,  1;
  0, 1,  3,  2;
  0, 1,  5,  8,   3;
  0, 1,  7, 20,  21,   5;
  0, 1,  9, 38,  75,  55,   8;
  0, 1, 11, 62, 189, 275, 144, 13;
		

Crossrefs

Array row n: A000045 (n=0), A001906 (n=1), A030191 (n=2), A099453 (n=3), A081574 (n=4), A081575 (n=5).
Array columns k: A005408 (k=3), A077588 (k=4).

Programs

  • Magma
    A081576:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >;
    [A081576(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, May 26 2021 *)
  • Sage
    def A081576(n,k): return sum( binomial(k,j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) )
    flatten([[A081576(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Rows are successive binomial transforms of F(n).
T(n, k) = ( ( (2*n + 1 + sqrt(5))/2 )^k - ( (2*n + 1 - sqrt(5))/2 )^k )/sqrt(5).
From G. C. Greubel, May 26 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*n^(k-j) with T(0, k) = Fibonacci(k) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*(n-k)^(k-j) (antidiagonal triangle). (End)

A295288 Binomial transform of the centered triangular numbers A005448.

Original entry on oeis.org

1, 5, 19, 62, 184, 512, 1360, 3488, 8704, 21248, 50944, 120320, 280576, 647168, 1478656, 3350528, 7536640, 16842752, 37421056, 82706432, 181927936, 398458880, 869269504, 1889533952, 4093640704, 8841592832, 19042140160, 40902852608
Offset: 0

Views

Author

Keywords

Comments

The sequence is column 3 of triangle in A207630.
First difference is given by A055818(n+3,3) for n > 0.

Examples

			a(0) = (3*0^2 + 9*0 + 8)*2^(-3) = 8/8 = 1.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Magma
    I:=[1,5,19]; [n le 3 select I[n] else 6*Self(n-1) -12*Self(n-2) +8*Self(n-3): n in [1..40]]; // G. C. Greubel, Oct 17 2018
  • Maple
    A:=n->(3*n^2+9*n+8)*2^(n-3); seq(A(n), n=0..70);
  • Mathematica
    Table[(3 n^2 + 9 n + 8) 2^(n-3), {n, 0, 70}]
    LinearRecurrence[{6,-12,8}, {1,5,19}, 50] (* G. C. Greubel, Oct 17 2018 *)
  • Maxima
    makelist((3*n^2 + 9*n + 8)*2^(n - 3), n, 0, 70);
    
  • PARI
    a(n) = (3*n^2 + 9*n + 8)*2^(n - 3) \\ Felix Fröhlich, Nov 19 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 2*x)^3.
a(n+3) = 8*a(n) - 12*a(n+1) + 6*a(n+2).
a(n+1) = 2*a(n) + 3*(n + 2)*2^(n-1).
a(n+1) = 2*a(n) + 3*A001792(n) = 2*a(n) + A001787(n+2) - A001792(n).
a(n) = (3*n^2 + 9*n + 8)*2^(n - 3).
a(n) = (1/8)*A077588(n+2)*A000079(n).

A383466 a(0) = 1; thereafter a(n) = 10*n^2 - 5*n + 2.

Original entry on oeis.org

1, 7, 32, 77, 142, 227, 332, 457, 602, 767, 952, 1157, 1382, 1627, 1892, 2177, 2482, 2807, 3152, 3517, 3902, 4307, 4732, 5177, 5642, 6127, 6632, 7157, 7702, 8267, 8852, 9457, 10082, 10727, 11392, 12077, 12782, 13507, 14252, 15017, 15802, 16607, 17432, 18277, 19142, 20027, 20932, 21857, 22802, 23767, 24752, 25757, 26782, 27827
Offset: 0

Views

Author

Keywords

Comments

Definition: A regular pentagram of radius R is formed by placing five equally-spaced points P_0 .. P_4 around the boundary of a circle of radius R, and drawing line segments P_0 - P_2 - P_4 - P_1 - P_3 - P_0.
Theorem 1: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular pentagrams with the same radius and the same center.
Conjecture 2: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular pentagrams with any radii and any centers.
The following construction works for any n >= 1. Take 5*n equally-spaced points P_i around a circle, and draw a pentagram through P_i, P_{i+n}, P_{i+2*n}, P_{i+3*n}, P_{i+4*n} for i = 0, ..., n-1.
The resulting planar graph decomposes into 5*n triangular regions each with 2*n-1 cells (see the red triangle in "Illustration for a(n)..."), plus the interior and exterior regions, for a total of 10*n^2 - 5*n + 2 regions. There are 10*n^2 vertices (10 for n=1, 40 for n=2, and so on).

Crossrefs

See A077588, A069894, and A386477 for analogous sequences based on triangles, squares, and hexagrams.
Without the "+2" in the definition, the sequence is A152745.

Programs

  • Mathematica
    A383466[n_] := If[n == 0, 1, 5*n*(2*n - 1) + 2]; Array[A383466, 50, 0] (* or *)
    Join[{1}, 5*PolygonalNumber[6, Range[49]] + 2] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 7, 32, 77}, 50] (* Paolo Xausa, Jul 22 2025 *)

Formula

From Elmo R. Oliveira, Sep 03 2025: (Start)
G.f.: (1 + 4*x + 14*x^2 + x^3)/(1 - x)^3.
E.g.f.: exp(x)*(2 + 5*x + 10*x^2) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A386477 a(0) = 1; thereafter a(n) = 2*(6*n^2 - 3*n + 1).

Original entry on oeis.org

1, 8, 38, 92, 170, 272, 398, 548, 722, 920, 1142, 1388, 1658, 1952, 2270, 2612, 2978, 3368, 3782, 4220, 4682, 5168, 5678, 6212, 6770, 7352, 7958, 8588, 9242, 9920, 10622, 11348, 12098, 12872, 13670, 14492, 15338, 16208, 17102, 18020, 18962, 19928, 20918, 21932, 22970, 24032, 25118, 26228, 27362, 28520, 29702, 30908, 32138, 33392, 34670
Offset: 0

Views

Author

Keywords

Comments

Definition: A regular hexagram of radius R is formed by placing six equally-spaced points P_0 .. P_5 around the boundary of a circle of radius R, and drawing line segments P_0 - P_2 - P_4 - P_0 and P_1 - P_3 - P_5 - P_1.
Theorem 1: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular hexagrams with the same radius and the same center.
Conjecture 2: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular hexagrams with any radii and any centers.
The following construction works for any n >= 1. Take 6*n equally-spaced points P_i around a circle, and draw hexagrams starting at P_i for i = 0, ..., n-1.
The resulting planar graph decomposes into 6*n triangular cells each with 2*n-1 cells (see the red triangle in the "Three pentagons" illustration), plus the interior and exterior regions, for a total of 12*n^2 - 6*n + 2 regions. There are 12*n^2 vertices, for n>0.

Crossrefs

See A077588, A069894, and A383466 for analogous sequences based on triangles, squares, and pentagrams.

Programs

  • Mathematica
    A386477[n_] := If[n == 0, 1, 6*n*(2*n - 1) + 2]; Array[A386477, 50, 0] (* or *)
    Join[{1}, 6*PolygonalNumber[6, Range[49]] + 2] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 38, 92}, 50] (* Paolo Xausa, Jul 24 2025 *)

Formula

From Stefano Spezia, Jul 23 2025: (Start)
G.f.: (1 + 5*x + 17*x^2 + x^3)/(1 - x)^3.
E.g.f.: 2*exp(x)*(1 + 3*x + 6*x^2) - 1. (End)
a(n) = A152746(n) + 2, for n >= 1. - Paolo Xausa, Jul 24 2025
Showing 1-10 of 11 results. Next