A069894
Centered square numbers: a(n) = 4*n^2 + 4*n + 2.
Original entry on oeis.org
2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, 1090, 1226, 1370, 1522, 1682, 1850, 2026, 2210, 2402, 2602, 2810, 3026, 3250, 3482, 3722, 3970, 4226, 4490, 4762, 5042, 5330, 5626, 5930, 6242, 6562, 6890, 7226, 7570, 7922, 8282
Offset: 0
Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 10 2002
If y = 3, then 81 + 144 = 225; if y = 4, then 12^2 + 16^2 = 20^2; 7^2 + 24^2 = 25^2 = 15^2 + 20^2.
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- N. A. Balonin and Jennifer Seberry, A Review and New Symmetric Conference Matrices, Research Online, Faculty of Engineering and Information Sciences, University of Wollongong, 2014.
- Keyang Li, Figure for n=1,2,3,4,5
- Tintarn, n convex quadrilaterals in the plane
- Wikipedia, Ulam Spiral Construction.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[4*n^2+4*n+2 : n in [0..50]]; // Wesley Ivan Hurt, Jul 26 2014
-
A069894:=n->4*n^2+4*n+2: seq(A069894(n), n=0..50); # Wesley Ivan Hurt, Jul 26 2014
-
Table[4n(n + 1) + 2, {n, 0, 45}]
-
vector(100, n, (2*n-1)^2+1); \\ Derek Orr, Jul 27 2014
-
[(2*n+1)^2 + 1 for n in range(50)] # G. C. Greubel, Nov 21 2018
A077591
Maximum number of regions into which the plane can be divided using n (concave) quadrilaterals.
Original entry on oeis.org
1, 2, 18, 50, 98, 162, 242, 338, 450, 578, 722, 882, 1058, 1250, 1458, 1682, 1922, 2178, 2450, 2738, 3042, 3362, 3698, 4050, 4418, 4802, 5202, 5618, 6050, 6498, 6962, 7442, 7938, 8450, 8978, 9522, 10082, 10658, 11250, 11858, 12482, 13122, 13778
Offset: 0
Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002
a(2) = 18 if you draw two concave quadrilaterals such that all four sides of one cross all four sides of the other.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Keyang Li, when n=1, number of regions is 2; when n=2, maximum number of regions is 18
- Keyang Li, when n=3, maximum number of regions is 50
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
-
Concatenation([1], List([1..2000], n->8*n^2 - 8*n + 2)); # Muniru A Asiru, Jan 29 2018
-
A077591:=n->`if`(n=0, 1, 8*n^2 - 8*n + 2); seq(A077591(n), n=0..50); # Wesley Ivan Hurt, Mar 12 2014
-
Table[2*(4*n^2 - 4*n + 1), {n,0,50}] (* G. C. Greubel, Jul 15 2017 *)
-
isok(n) = (sod = sumdiv(n, d, (d%2)*d)) && (sed = sumdiv(n, d, (1 - d%2)*d)) && (eulerphi(sod) == eulerphi(sed)); \\ from Michel Lagneau comment; Michel Marcus, Mar 15 2014
A096777
a(n) = a(n-1) + Sum_{k=1..n-1}(a(k) mod 2), a(1) = 1.
Original entry on oeis.org
1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 53, 62, 71, 81, 92, 103, 115, 128, 141, 155, 170, 185, 201, 218, 235, 253, 272, 291, 311, 332, 353, 375, 398, 421, 445, 470, 495, 521, 548, 575, 603, 632, 661, 691, 722, 753, 785, 818, 851, 885, 920, 955, 991, 1028
Offset: 1
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 11*x^6 + 15*x^7 + 20*x^8 + ... - _Michael Somos_, Apr 18 2020
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-L. Baril, T. Mansour, A. Petrossian, Equivalence classes of permutations modulo excedances, 2014.
- Eric Weisstein's World of Mathematics, Odd Number
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
A084684
Degrees of certain maps (see Comments and Formulas for more precise definitions).
Original entry on oeis.org
1, 2, 4, 8, 13, 20, 28, 38, 49, 62, 76, 92, 109, 128, 148, 170, 193, 218, 244, 272, 301, 332, 364, 398, 433, 470, 508, 548, 589, 632, 676, 722, 769, 818, 868, 920, 973, 1028, 1084, 1142, 1201, 1262, 1324, 1388, 1453, 1520, 1588, 1658, 1729, 1802, 1876, 1952, 2029, 2108, 2188, 2270, 2353, 2438, 2524, 2612, 2701, 2792, 2884, 2978, 3073, 3170, 3268, 3368, 3469, 3572
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 13*x^4 + 20*x^5 + 28*x^6 + 38*x^7 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Jarmo Hietarinta and Claude Viallet, Discrete Painlevé I and singularity confinement in projective space, Chaos, Solitons and Fractals 11 (2000), pp. 29-32.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
-
a[ n_] := Quotient[ 3*n^2 + 6, 4]; (* Michael Somos, Feb 08 2015 *)
LinearRecurrence[{2,0,-2,1},{1,2,4,8},70] (* Harvey P. Dale, Jul 21 2021 *)
-
a(n)=(6*n^2 + 9 - (-1)^n)/8 \\ Charles R Greathouse IV, Sep 10 2014
-
{a(n) = (n^2 + 2)*3 \ 4}; /* Michael Somos, Feb 08 2015 */
A242658
a(n) = 3*n^2 - 3*n + 2.
Original entry on oeis.org
2, 2, 8, 20, 38, 62, 92, 128, 170, 218, 272, 332, 398, 470, 548, 632, 722, 818, 920, 1028, 1142, 1262, 1388, 1520, 1658, 1802, 1952, 2108, 2270, 2438, 2612, 2792, 2978, 3170, 3368, 3572, 3782, 3998, 4220, 4448, 4682, 4922, 5168, 5420, 5678, 5942, 6212, 6488, 6770, 7058, 7352
Offset: 0
- C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 429, Example 2(i).
A077588 is the same except for the initial term.
-
[3*n^2 - 3*n + 2: n in [0..70]]; // Vincenzo Librandi, Sep 05 2016
-
Table[3 n^2 - 3 n + 2, {n, 0, 100}] (* Vincenzo Librandi, Sep 05 2016 *)
LinearRecurrence[{3, -3, 1}, {2, 8, 20}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[-2 (1 - 2 x + 4 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
a(n) = 3*n^2-3*n+2 \\ Altug Alkan, Sep 05 2016
A004538
a(n) = 3*n^2 + 3*n - 1.
Original entry on oeis.org
-1, 5, 17, 35, 59, 89, 125, 167, 215, 269, 329, 395, 467, 545, 629, 719, 815, 917, 1025, 1139, 1259, 1385, 1517, 1655, 1799, 1949, 2105, 2267, 2435, 2609, 2789, 2975, 3167, 3365, 3569, 3779, 3995, 4217, 4445
Offset: 0
-
[3*n^2 + 3*n -1: n in [0..50]]; // G. C. Greubel, Sep 10 2018
-
Table[5*Sum[k^4,{k,1,n}]/Sum[k^2,{k,1,n}], {n,1,20}] (* Alexander Adamchuk, Apr 12 2006 *)
Table[3n^2+3n-1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{-1,5,17},40] (* Harvey P. Dale, Jan 18 2019 *)
-
a(n)=3*n^2+3*n-1 \\ Charles R Greathouse IV, Jun 17 2017
A081576
Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 3, 0, 1, 7, 20, 21, 5, 0, 1, 9, 38, 75, 55, 8, 0, 1, 11, 62, 189, 275, 144, 13, 0, 1, 13, 92, 387, 905, 1000, 377, 21, 0, 1, 15, 128, 693, 2305, 4256, 3625, 987, 34, 0, 1, 17, 170, 1131, 4955, 13392, 19837, 13125, 2584, 55
Offset: 0
Square array begins as:
0, 1, 1, 2, 3, 5, 8, ... A000045;
0, 1, 3, 8, 21, 55, 144, ... A001906;
0, 1, 5, 20, 75, 275, 1000, ... A030191;
0, 1, 7, 38, 189, 905, 4256, ... A099453;
0, 1, 9, 62, 387, 2305, 13392, ... A081574;
0, 1, 11, 92, 693, 4955, 34408, ... A081575;
0, 1, 13, 128, 1131, 9455, 76544, ...
The antidiagonal triangle begins as:
0;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 5, 8, 3;
0, 1, 7, 20, 21, 5;
0, 1, 9, 38, 75, 55, 8;
0, 1, 11, 62, 189, 275, 144, 13;
-
A081576:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >;
[A081576(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, May 26 2021 *)
-
def A081576(n,k): return sum( binomial(k,j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) )
flatten([[A081576(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A295288
Binomial transform of the centered triangular numbers A005448.
Original entry on oeis.org
1, 5, 19, 62, 184, 512, 1360, 3488, 8704, 21248, 50944, 120320, 280576, 647168, 1478656, 3350528, 7536640, 16842752, 37421056, 82706432, 181927936, 398458880, 869269504, 1889533952, 4093640704, 8841592832, 19042140160, 40902852608
Offset: 0
a(0) = (3*0^2 + 9*0 + 8)*2^(-3) = 8/8 = 1.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
-
I:=[1,5,19]; [n le 3 select I[n] else 6*Self(n-1) -12*Self(n-2) +8*Self(n-3): n in [1..40]]; // G. C. Greubel, Oct 17 2018
-
A:=n->(3*n^2+9*n+8)*2^(n-3); seq(A(n), n=0..70);
-
Table[(3 n^2 + 9 n + 8) 2^(n-3), {n, 0, 70}]
LinearRecurrence[{6,-12,8}, {1,5,19}, 50] (* G. C. Greubel, Oct 17 2018 *)
-
makelist((3*n^2 + 9*n + 8)*2^(n - 3), n, 0, 70);
-
a(n) = (3*n^2 + 9*n + 8)*2^(n - 3) \\ Felix Fröhlich, Nov 19 2017
A383466
a(0) = 1; thereafter a(n) = 10*n^2 - 5*n + 2.
Original entry on oeis.org
1, 7, 32, 77, 142, 227, 332, 457, 602, 767, 952, 1157, 1382, 1627, 1892, 2177, 2482, 2807, 3152, 3517, 3902, 4307, 4732, 5177, 5642, 6127, 6632, 7157, 7702, 8267, 8852, 9457, 10082, 10727, 11392, 12077, 12782, 13507, 14252, 15017, 15802, 16607, 17432, 18277, 19142, 20027, 20932, 21857, 22802, 23767, 24752, 25757, 26782, 27827
Offset: 0
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Scott R. Shannon, Illustration for a(1) = 7. [Note that the cell counts shown on these four figures do not include the black exterior region, so the totals are off by 1]
- Scott R. Shannon, Illustration for a(2) = 32.
- Scott R. Shannon, Illustration for a(3) = 77.
- Scott R. Shannon, Illustration for a(8) = 602.
- N. J. A. Sloane, Illustration for a(1) = 7.
- N. J. A. Sloane, Illustration for a(2) = 32.
- N. J. A. Sloane, Illustration for a(n), n >= 1, showing a(3) = 77.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Without the "+2" in the definition, the sequence is
A152745.
-
A383466[n_] := If[n == 0, 1, 5*n*(2*n - 1) + 2]; Array[A383466, 50, 0] (* or *)
Join[{1}, 5*PolygonalNumber[6, Range[49]] + 2] (* or *)
LinearRecurrence[{3, -3, 1}, {1, 7, 32, 77}, 50] (* Paolo Xausa, Jul 22 2025 *)
A386477
a(0) = 1; thereafter a(n) = 2*(6*n^2 - 3*n + 1).
Original entry on oeis.org
1, 8, 38, 92, 170, 272, 398, 548, 722, 920, 1142, 1388, 1658, 1952, 2270, 2612, 2978, 3368, 3782, 4220, 4682, 5168, 5678, 6212, 6770, 7352, 7958, 8588, 9242, 9920, 10622, 11348, 12098, 12872, 13670, 14492, 15338, 16208, 17102, 18020, 18962, 19928, 20918, 21932, 22970, 24032, 25118, 26228, 27362, 28520, 29702, 30908, 32138, 33392, 34670
Offset: 0
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Scott R. Shannon, Illustration for a(1) = 8 [Note that the cell counts shown on these five figures do not include the black exterior region, so the totals are off by 1]
- Scott R. Shannon, Illustration for a(2) = 38
- Scott R. Shannon, Illustration for a(3) = 92
- Scott R. Shannon, Illustration for a(8) = 722
- Scott R. Shannon, Illustration for a(10) = 1142
- N. J. A. Sloane, Sketch to illustrate a(2) = 38. The two hexagrams are colored red and black, respectively.
- N. J. A. Sloane, Sketch to illustrate a(3) = 92. The three hexagrams are colored red, blue, and black, respectively.
- N. J. A. Sloane, Analogous illustration for three pentagrams
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
A386477[n_] := If[n == 0, 1, 6*n*(2*n - 1) + 2]; Array[A386477, 50, 0] (* or *)
Join[{1}, 6*PolygonalNumber[6, Range[49]] + 2] (* or *)
LinearRecurrence[{3, -3, 1}, {1, 8, 38, 92}, 50] (* Paolo Xausa, Jul 24 2025 *)
Showing 1-10 of 11 results.
Comments