cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077588 Maximum number of regions into which the plane is divided by n triangles.

Original entry on oeis.org

1, 2, 8, 20, 38, 62, 92, 128, 170, 218, 272, 332, 398, 470, 548, 632, 722, 818, 920, 1028, 1142, 1262, 1388, 1520, 1658, 1802, 1952, 2108, 2270, 2438, 2612, 2792, 2978, 3170, 3368, 3572, 3782, 3998, 4220, 4448, 4682, 4922, 5168, 5420, 5678, 5942, 6212, 6488
Offset: 0

Views

Author

Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002

Keywords

Examples

			a(2) = 8 because a Star of David divides the plane into 8 regions: 6 triangles at the vertices, the interior hexagon, and the exterior.
		

Crossrefs

a(n) = A096777(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 29 2007
For n > 0, a(n) = 2 * A005448(n). - Jon Perry, Apr 14 2013
a(n) = A242658(n) for n > 0. - Eric W. Weisstein, Nov 29 2017

Programs

Formula

a(n) = 3n^2 - 3n + 2 for n > 0.
Proof (from Joshua Zucker and N. J. A. Sloane, Dec 01 2017)
Represent the configuration of n triangles by a planar graph with a node for each vertex of the triangles and for each intersection point. Let there be v_n nodes and e_n edges. By classical graph theory, a(n) = e_n - v_n + 2. When we go from n to n+1 triangles, each side of the new triangle can meet each side of the existing triangles at most twice, so Dv_n := v_{n+1}-v_n <= 6n.
Each of these intersection points increases the number of edges in the graph by 2, so De_n := e_{n+1}-e_n = 3 + 2*Dv_n, Da_n := a(n+1)-a(n) = 3 + Dv_n <= 3+6*n.
These upper bounds can be achieved by taking 3n points equally spaced around a circle and drawing n concentric overlapping equilateral triangles in the obvious way, and we achieve a(n) = 3n^2 - 3n + 2 (and v_n = 3n^2, e_n = 3n(2n-1)) for n>0. QED
a(n) is the nearest integer to (Sum_{k>=n} 1/k^2)/(Sum_{k>=n} 1/k^4). - Benoit Cloitre, Jun 12 2003
a(n) = a(n-1) + 6*n - 6 (with a(1) = 2). - Vincenzo Librandi, Dec 07 2010
For n > 0, a(n) = A002061(n-1) + A056220(n); and for n > 1, a(n) = A002061(n+1) + A056220(n-1). - Bruce J. Nicholson, Sep 22 2017

A349510 a(n) = binomial(n^3-floor(((n-1)^3+1)/2), 3*n^2-3*n+1) + binomial(n^3-floor(((n-1)^3+2)/2), 3*n^2-3*n+1).

Original entry on oeis.org

0, 1, 2, 10395, 709721037200, 11641222531417506431654250, 94310884171276301089942905465465961965897600, 1948497841630989653689709780233830548909045113177792777217829860522656, 192558458967017735390472923791964989275151544601992192306693834632003663346431678074519409150869009600
Offset: 0

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is a sharp upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Li et al. and Zhang et al.).

Crossrefs

Programs

  • Mathematica
    a[n_]:=Binomial[n^3-Floor[((n-1)^3+1)/2],3n^2-3n+1]+Binomial[n^3-Floor[((n-1)^3+2)/2],3n^2-3n+1]; Array[a,9,0]

Formula

A349508(n)/A349509(n) <= a(n) < A349511(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
a(n) ~ (n/6)^(3*n*(n-1))*exp(-6+13/n+3*n^2)/(3*sqrt(6*Pi)).

A242659 a(n) = n*(n^2 - 3*n + 4).

Original entry on oeis.org

0, 2, 4, 12, 32, 70, 132, 224, 352, 522, 740, 1012, 1344, 1742, 2212, 2760, 3392, 4114, 4932, 5852, 6880, 8022, 9284, 10672, 12192, 13850, 15652, 17604, 19712, 21982, 24420, 27032, 29824, 32802, 35972, 39340, 42912, 46694, 50692, 54912, 59360
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2014

Keywords

Comments

An exercise in my secondary school algebra book.

References

  • C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 429, Example 2(i).

Crossrefs

Partial sums of A242658.

Programs

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: 2*x*(4*x^2 - 2*x + 1)/(x - 1)^4. (End)
Showing 1-3 of 3 results.