cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A004396 One even number followed by two odd numbers.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47
Offset: 0

Views

Author

Keywords

Comments

Maximal number of points on a triangular grid of edge length n-1 with no 2 points on same row, column, or diagonal. See Problem 252 in The Inquisitive Problem Solver. - R. K. Guy [Comment revised by N. J. A. Sloane, Jul 01 2016]
See also Problem C2 of 2009 International Mathematical Olympiad. - Ruediger Jehn, Oct 19 2021
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(3).
Starting at 3, 3, ..., gives maximal number of acute angles in an n-gon. - Takenov Nurdin (takenov_vert(AT)e-mail.ru), Mar 04 2003
Let b(1) = b(2) = 1, b(k) = b(k-1)+( b(k-2) reduced (mod 2)); then a(n) = b(n-1). - Benoit Cloitre, Aug 14 2002
(1+x+x^2+x^3 ) / ( (1-x^2)*(1-x^3)) is the Poincaré series [or Poincare series] (or Molien series) for Sigma_4.
For n > 6, maximum number of knight moves to reach any square from the corner of an (n-2) X (n-2) chessboard. Likewise for n > 6, the maximum number of knight moves to reach any square from the middle of an (2n-5) X (2n-5) chessboard. - Ralf Stephan, Sep 15 2004
A transform of the Jacobsthal numbers A001045 under the mapping of g.f.s g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005
For n >= 1; a(n) = number of successive terms of A040001 that add to n; or length of n-th term of A028359. - Jaroslav Krizek, Mar 28 2010
For n > 0: a(n) = length of n-th row in A082870. - Reinhard Zumkeller, Apr 13 2014
Also the independence number of the n-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017
In a game of basketball points can be accumulated by making field goals (two or three points) or free throws (one point). a(n) is the number of different ways to score n-1 points. For example, a score of 4 can be achieved in 3 different ways, with 2 shots (3+1 or 2+2), 3 shots (2+1+1) or 4 shots (1+1+1+1), so a(5) = 3. - Ivan N. Ianakiev, Mar 31 2025

Examples

			G.f. = x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 5*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • J. Kurschak, Hungarian Mathematical Olympiads, 1976, Mir, Moscow.
  • Paul Vanderlind, Richard K. Guy, and Loren C. Larson, The Inquisitive Problem Solver, MAA, 2002. See Problem 252.

Crossrefs

Programs

  • Haskell
    a004396 n = a004396_list !! n
    a004396_list = 0 : 1 : 1 : map (+ 2) a004396_list
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Magma
    [(Floor(n/3) + Ceiling(n/3)): n in [0..70]]; // Vincenzo Librandi, Aug 07 2011
    
  • Maple
    A004396:=n->floor((2*n + 1)/3); seq(A004396(n), n=0..100); # Wesley Ivan Hurt, Nov 30 2013
  • Mathematica
    Table[Floor[(2 n + 1)/3], {n, 0, 75}]
    With[{n = 50}, Riffle[Range[0, n], Range[1, n, 2], {3, -1, 3}]] (* Harvey P. Dale, May 14 2015 *)
    CoefficientList[Series[(x + x^3)/((1 - x) (1 - x^3)), {x, 0, 71}], x] (* Michael De Vlieger, Oct 27 2016 *)
    a[ n_] := Quotient[2 n + 1, 3]; (* Michael Somos, Oct 23 2017 *)
    a[ n_] := Sign[n] SeriesCoefficient[ (x + x^3) / ((1 - x) (1 - x^3)), {x, 0, Abs@n}]; (* Michael Somos, Oct 23 2017 *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 1, 2, 3}, {0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
    f[-1]=0; f[n_]:=Length[Union[Plus@@@FrobeniusSolve[{1,2,3},n]]]; f/@Range[-1,100] (* Ivan N. Ianakiev, Mar 31 2025 *)
  • PARI
    a(n)=2*n\/3 \\ Charles R Greathouse IV, Apr 17 2012
    
  • Sage
    def a(n) : return( dimension_cusp_forms( Gamma0(3), 2*n+4) ); # Michael Somos, Jul 03 2014

Formula

G.f.: (x+x^3)/((1-x)*(1-x^3)).
a(n) = floor( (2*n + 1)/3 ).
a(n) = a(n-1) + (1/2)*((-1)^floor((4*n+2)/3) + 1), a(0) = 0. - Mario Catalani (mario.catalani(AT)unito.it), Oct 20 2003
a(n) = 2n/3 - cos(2*Pi*n/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*n/3 + Pi/3)/9. - Paul Barry, Mar 18 2004
a(n) = A096777(n+1) - A096777(n) for n > 0. - Reinhard Zumkeller, Jul 09 2004
From Paul Barry, Jan 16 2005: (Start)
G.f.: x*(1+x^2)/(1-x-x^3+x^4).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.
a(n) = Sum_{k = 0..n} binomial(n-k-1, k)*(-1)^k*A001045(n-2k). (End)
a(n) = (A006369(n) - (A006369(n) mod 2) * (-1)^(n mod 3)) / (1 + A006369(n) mod 2). - Reinhard Zumkeller, Jan 23 2005
a(n) = A004773(n) - A004523(n). - Reinhard Zumkeller, Aug 29 2005
a(n) = floor(n/3) + ceiling(n/3). - Jonathan Vos Post, Mar 19 2006
a(n+1) = A008620(2n). - Philippe Deléham, Dec 14 2006
a(A032766(n)) = n. - Reinhard Zumkeller, Oct 30 2009
a(n) = floor((2*n^2+4*n+2)/(3*n+4)). - Gary Detlefs, Jul 13 2010
Euler transform of length 4 sequence [1, 1, 1, -1]. - Michael Somos, Jul 03 2014
a(n) = n - floor((n+1)/3). - Wesley Ivan Hurt, Sep 17 2015
a(n) = A092200(n) - floor((n+5)/3). - Filip Zaludek, Oct 27 2016
a(n) = -a(-n) for all n in Z. - Michael Somos, Oct 30 2016
E.g.f.: (2/9)*(3*exp(x)*x + sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)). - Stefano Spezia, Sep 20 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2. - Amiram Eldar, Sep 29 2022

A056108 Fourth spoke of a hexagonal spiral.

Original entry on oeis.org

1, 5, 15, 31, 53, 81, 115, 155, 201, 253, 311, 375, 445, 521, 603, 691, 785, 885, 991, 1103, 1221, 1345, 1475, 1611, 1753, 1901, 2055, 2215, 2381, 2553, 2731, 2915, 3105, 3301, 3503, 3711, 3925, 4145, 4371, 4603, 4841, 5085, 5335, 5591, 5853, 6121, 6395
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

a(n) = sum of (n+1)-th row terms of triangle A134234. - Gary W. Adamson, Oct 14 2007
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Equals binomial transform of [1, 4, 6, 0, 0, 0, ...] - Gary W. Adamson, Apr 30 2008
From A.K. Devaraj, Sep 18 2009: (Start)
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod f(x)); here n belongs to N.
There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z.
However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x.
The present sequence is the integer part when the polynomial is x^2 + x + 1 and x = sqrt(2),
f(x+n*f(x))/f(x) = a(n) + A005563(n)*sqrt(2).
Equals triangle A128229 as an infinite lower triangular matrix * A016777 as a vector, where A016777(n) = (3*n+1). (End)
Numbers of the form ((-h^2+h+1)^2+(h^2-h+1)^2+(h^2+h-1)^2)/(h^2+h+1) for h=n+1. - Bruno Berselli, Mar 13 2013

Crossrefs

Other spirals: A054552.

Programs

Formula

a(n) = 3*n^2 + n + 1.
a(n) = a(n-1) + 6*n - 2 = 2*a(n-1) - a(n-2) + 6
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056105(n) + 3*n = A056106(n) + 2*n = A056107(n) + n = A056109(n) - n = A003215(n) - 2*n.
a(n) = A096777(3n+1) . - Reinhard Zumkeller, Dec 29 2007
a(n) = 6*n+a(n-1)-2 with n>0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1+2*x+3*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(-n) = A056106(n). - Bruno Berselli, Mar 13 2013
E.g.f.: (3*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jul 19 2017

A056106 Second spoke of a hexagonal spiral.

Original entry on oeis.org

1, 3, 11, 25, 45, 71, 103, 141, 185, 235, 291, 353, 421, 495, 575, 661, 753, 851, 955, 1065, 1181, 1303, 1431, 1565, 1705, 1851, 2003, 2161, 2325, 2495, 2671, 2853, 3041, 3235, 3435, 3641, 3853, 4071, 4295, 4525, 4761, 5003, 5251, 5505, 5765, 6031, 6303
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

First differences of A027444. - J. M. Bergot, Jun 04 2012
Numbers of the form ((h^2+h+1)^2+(-h^2+h+1)^2+(h^2+h-1)^2)/(h^2-h+1) for h=n-1. - Bruno Berselli, Mar 13 2013
For n > 0: 2*a(n) = A058331(n) + A001105(n) + A001844(n-1) = A251599(3*n-2) + A251599(3*n-1) + A251599(3*n). - Reinhard Zumkeller, Dec 13 2014
For all n >= 6, a(n+1) expressed in base n is "353". - Mathew Englander, Jan 06 2021

Crossrefs

First differences of A053698, A027444, and A188947.
Cf. A113524 (semiprime terms), A002061.
Other spirals: A054552.

Programs

  • Haskell
    a056106 n = n * (3 * n - 1) + 1  -- Reinhard Zumkeller, Dec 13 2014
  • Magma
    I:=[1,3]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+6: n in [1..50]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Table[3*n^2 - n + 1, {n,0,50}] (* G. C. Greubel, Jul 19 2017 *)
  • PARI
    a(n) = 3*n^2-n+1;
    

Formula

a(n) = 3*n^2 - n + 1.
a(n) = a(n-1) + 6*n - 4 = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (1+2*x+3*x^2)*exp(x). - Paul Barry, Mar 13 2003
a(n) = A096777(3*n) for n>0. - Reinhard Zumkeller, Dec 29 2007
G.f.: (1+5*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(n) = n*A002061(n+1) - (n-1)*A002061(n). - Bruno Berselli, Jan 15 2013
a(-n) = A056108(n). - Bruno Berselli, Mar 13 2013

A007980 Expansion of (1+x^2)/((1-x)^2*(1-x^3)).

Original entry on oeis.org

1, 2, 4, 7, 10, 14, 19, 24, 30, 37, 44, 52, 61, 70, 80, 91, 102, 114, 127, 140, 154, 169, 184, 200, 217, 234, 252, 271, 290, 310, 331, 352, 374, 397, 420, 444, 469, 494, 520, 547, 574, 602, 631, 660, 690, 721, 752, 784, 817, 850, 884, 919, 954, 990, 1027, 1064
Offset: 0

Views

Author

Keywords

Comments

Molien series for ternary self-dual codes over GF(3) of length 12n containing 11...1.
(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)) is the Poincaré series [or Poincare series] (or Molien series) for H^*(O_3(q); F_2).
a(n) is the position of the n-th triangular number in the running sum of the (pseudo-Orloj) sequence 1,2,1,2,1,2,1...., cf. A028355. - Wouter Meeussen, Mar 10 2002
a(n) = [a(n-1) + (number of even terms so far in the sequence)]. Example: 14 is [10 + 4 even terms so far in the sequence (they are 0,2,4,10)]. See A096777 for the same construction with odd integers. - Eric Angelini, Aug 05 2007
The number of partitions of 2*n into at most 3 parts. - Colin Barker, Mar 31 2015
Also a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of a trigonal Rotational Energy Surface. An optimal basis for the expansion follows either decomposition: g1(x) = (1+x)(1+x^2)g2(x) or g1(x) = (1+x^2)x^(-1)g3(x), where g1(x), g2(x), g3(x) are the generating functions for sequences A007980, A001399, A001840. - Bradley Klee, Aug 06 2015
Also a(n) equals the number of linearly-independent terms at 4n-th order in the power series expansion of the symmetrized weight enumerator of a self-dual code of length n over Z4 that contains a vector (+/-)1^n and has all norms divisible by 8. An optimal basis for the expansion follows the decomposition: g1(x) = (1+x)(1+x^2)g2(x) where g1(x), g2(x) are the generating functions for sequences A007980, A001399. (Cf. Calderbank and Sloane, Corollary 5.) - Bradley Klee, Aug 06 2015
Also, a(n) is equal to the number of partitions of 2n+3 of length 3. Letting n=4, there are a(4)=10 partitions of 2n+3=11 of length 3: (9,1,1), (8,2,1), (7,3,1), (7,2,2), (6,4,1), (6,3,2), (5,5,1), (5,4,2), (5,3,3), (4,4,3). - John M. Campbell, Jan 30 2016
a(n) is the number of partitions of n into parts 1 (of two kinds), part 2 (occurring at most once), and parts 3. - Joerg Arndt, Oct 12 2020
Conjecture: a(n) is the maximum number of pieces a triangle can be cut into by n cevians. - Anton Zakharov, Apr 04 2017
Also, a(n) is the number of graphs which are double-triangle descendants of K_5 with n+6 triangles and 3 more vertices than triangles. See Laradji/Mishna/Yeats reference, proposition 3.6 for details. - Karen A. Yeats, Feb 21 2020

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 10*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + ...
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.

Crossrefs

Programs

  • Maple
    with (combinat):seq(count(Partition((2*n+1)), size=3), n=1..56); # Zerinvary Lajos, Mar 28 2008
  • Mathematica
    Table[Ceiling[n (n+1)/3], {n, 56}]
    CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^3)),{x,0,60}],x] (* Vincenzo Librandi, Feb 25 2012 *)
    a[ n_] := Quotient[ n^2, 3] + n + 1; (* Michael Somos, Aug 23 2015 *)
    LinearRecurrence[{2,-1,1,-2,1},{1,2,4,7,10},60] (* Harvey P. Dale, Aug 24 2016 *)
  • PARI
    {a(n) = if( n<-1, a(-3-n), polcoeff( (1 + x^2) / ( (1 - x)^2 * (1 - x^3)) + x*O(x^n), n))}; /* Michael Somos, Jun 07 2003 */
    
  • PARI
    {a(n) = n^2\3 + n+1}; /* Michael Somos, Aug 23 2015 */
    
  • PARI
    a(n) = #partitions(2*n, ,[1,3]); \\ Michel Marcus, Feb 12 2016
    
  • PARI
    a(n) = #partitions(2*n+3, ,[3,3]); \\ Michel Marcus, Feb 12 2016

Formula

G.f.: (1 + x^2) / ((1 - x)^2 * (1 - x^3)). - Michael Somos, Jun 07 2003
a(n) = a(n-1) + a(n-3) -a(n-4) + 2 = a(-3-n) for all n in Z. - Michael Somos, Jun 07 2003
a(n) = ceiling((n+1)*(n+2)/3). - Paul Boddington, Jan 26 2004
a(n) = A192736(n+1) / (n+1). - Reinhard Zumkeller, Jul 08 2011
From Bruno Berselli, Oct 22 2010: (Start)
a(n) = ((n+1)*(n+2)+(2*cos(2*Pi*n/3)+1)/3)/3 = Sum_{i=1..n+1} A004396(i).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
a(n) = A002378(n+1)/3 if 3 divides A002378(n+1), a(n) = (A002378(n)+1)/3 otherwise. (End)
a(n) = A001840(n+1) + A001840(n-1). - R. J. Mathar, Aug 23 2015
From Michael Somos, Aug 23 2015: (Start)
Euler transform of length 4 sequence [2, 1, 1, -1].
a(n) = A001399(2*n) = A008796(2*n) = A008796(2*n + 3) = A069905(2*n + 3) = A211540(2*n + 5).
a(2*n) = A238705(n+1).
a(3*n - 1) = A049451(n).
a(3*n) = A003215(n).
a(3*n + 1) = A049450(n+1).
2*a(3*n - 1) = A005449(n).
2*a(3*n + 1) = A000326(n+1).
a(n+1) - a(n) = A004396(n+2). (End)
a(n) = floor((n^2+3*n+3)/3). - Giacomo Guglieri, May 01 2019
a(n) = A000212(n) + n+1. - Yuchun Ji, Oct 12 2020
Sum_{n>=0} 1/a(n) = (tanh(Pi/(2*sqrt(3)))-1)*Pi/sqrt(3) + 3. - Amiram Eldar, May 20 2023

A077588 Maximum number of regions into which the plane is divided by n triangles.

Original entry on oeis.org

1, 2, 8, 20, 38, 62, 92, 128, 170, 218, 272, 332, 398, 470, 548, 632, 722, 818, 920, 1028, 1142, 1262, 1388, 1520, 1658, 1802, 1952, 2108, 2270, 2438, 2612, 2792, 2978, 3170, 3368, 3572, 3782, 3998, 4220, 4448, 4682, 4922, 5168, 5420, 5678, 5942, 6212, 6488
Offset: 0

Views

Author

Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002

Keywords

Examples

			a(2) = 8 because a Star of David divides the plane into 8 regions: 6 triangles at the vertices, the interior hexagon, and the exterior.
		

Crossrefs

a(n) = A096777(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 29 2007
For n > 0, a(n) = 2 * A005448(n). - Jon Perry, Apr 14 2013
a(n) = A242658(n) for n > 0. - Eric W. Weisstein, Nov 29 2017

Programs

Formula

a(n) = 3n^2 - 3n + 2 for n > 0.
Proof (from Joshua Zucker and N. J. A. Sloane, Dec 01 2017)
Represent the configuration of n triangles by a planar graph with a node for each vertex of the triangles and for each intersection point. Let there be v_n nodes and e_n edges. By classical graph theory, a(n) = e_n - v_n + 2. When we go from n to n+1 triangles, each side of the new triangle can meet each side of the existing triangles at most twice, so Dv_n := v_{n+1}-v_n <= 6n.
Each of these intersection points increases the number of edges in the graph by 2, so De_n := e_{n+1}-e_n = 3 + 2*Dv_n, Da_n := a(n+1)-a(n) = 3 + Dv_n <= 3+6*n.
These upper bounds can be achieved by taking 3n points equally spaced around a circle and drawing n concentric overlapping equilateral triangles in the obvious way, and we achieve a(n) = 3n^2 - 3n + 2 (and v_n = 3n^2, e_n = 3n(2n-1)) for n>0. QED
a(n) is the nearest integer to (Sum_{k>=n} 1/k^2)/(Sum_{k>=n} 1/k^4). - Benoit Cloitre, Jun 12 2003
a(n) = a(n-1) + 6*n - 6 (with a(1) = 2). - Vincenzo Librandi, Dec 07 2010
For n > 0, a(n) = A002061(n-1) + A056220(n); and for n > 1, a(n) = A002061(n+1) + A056220(n-1). - Bruce J. Nicholson, Sep 22 2017

A097602 a(n+1) = a(n) + number of squares so far; a(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19, 22, 25, 29, 33, 37, 41, 45, 49, 54, 59, 64, 70, 76, 82, 88, 94, 100, 107, 114, 121, 129, 137, 145, 153, 161, 169, 178, 187, 196, 206, 216, 226, 236, 246, 256, 267, 278, 289, 301, 313, 325, 337, 349, 361, 374, 387, 400, 414, 428
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 30 2004

Keywords

Comments

Conjecture: a(n) = m^2 iff m mod 3 > 0.
a(n) is a square iff n is congruent to {1, 4} mod 9. - Vladeta Jovovic, Aug 30 2004

Examples

			a(2) = a(1) + #{1} = 1 + 1 = 2;
a(3) = a(2) + #{1} = 2 + 1 = 3;
a(4) = a(3) + #{1} = 3 + 1 = 4;
a(5) = a(4) + #{1,4} = 4 + 2 = 6;
a(6) = a(5) + #{1,4} = 6 + 2 = 8;
a(7) = a(6) + #{1,4} = 8 + 2 = 10;
a(8) = a(7) + #{1,4} = 10 + 2 = 12;
a(9) = a(8) + #{1,4} = 12 + 2 = 14;
a(10) = a(9) + #{1,4} = 14 + 2 = 16;
a(11) = a(10) + #{1,4,16} = 16 + 3 = 19;
a(12) = a(11) + #{1,4,16} = 19 + 3 = 22.
		

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,6,8,10,12,14,16,19];; for n in [12..70] do a[n]:= 2*a[n-1]-a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Jan 14 2019
  • Haskell
    a097602 n = a097602_list !! (n-1)
    a097602_list = 1 : f 1 1 where
       f x c = y : f y (c + a010052 y) where y = x + c
    -- Reinhard Zumkeller, Nov 15 2011
    
  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3) )); // G. C. Greubel, Jan 14 2019
    
  • Mathematica
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,6,8,10,12,14,16,19}, 70] (* G. C. Greubel, Jan 14 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3)) \\ G. C. Greubel, Jan 14 2019
    
  • Sage
    a=(x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3)).series(x, 70).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jan 14 2019
    

Formula

a(9*n+1) = (3*n+1)^2; a(9*n+4) = (3*n+2)^2. - Vladeta Jovovic, Aug 30 2004
G.f.: x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3). - Vladeta Jovovic, Aug 30 2004
a(n+1) = a(n) + Sum_{k=1..n} A010052(a(k)). - Reinhard Zumkeller, Nov 15 2011

A131093 a(1)=1, a(n) = a(n-1) + sum of odd numbers which are among the first (n-1) terms of the sequence.

Original entry on oeis.org

1, 2, 3, 7, 18, 29, 69, 178, 287, 683, 1762, 2841, 6761, 17442, 28123, 66927, 172658, 278389, 662509, 1709138, 2755767, 6558163, 16918722, 27279281, 64919121, 167478082, 270037043, 642633047, 1657862098, 2673091149
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 14 2007

Keywords

Comments

a(n) mod 2 = A011655(n+1);
a(n) = a(n-1) + Sum(a(k)*(a(k) mod 2): 1<=k

Crossrefs

Programs

  • Mathematica
    nxt[{ot_,a_}]:=Module[{x=a+ot},{If[OddQ[x],ot+x,ot],x}]; NestList[nxt,{1,1},30][[All,2]] (* Harvey P. Dale, Dec 18 2020 *)

Formula

Empirical g.f.: -x*(x-1)*(x^4+3*x^3+6*x^2+3*x+1) / (x^6-10*x^3+1). - Colin Barker, Mar 29 2013

A129017 Isomer numbers for the constant-isomer series: the monradical, diradical, triradical, tetraradical, etc. series.

Original entry on oeis.org

1, 1, 1, 2, 4, 4, 12, 19, 19, 46, 70, 70, 162, 239, 239, 504, 726, 726, 1471, 2062, 2062
Offset: 0

Author

N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007

Keywords

Comments

The terms occur in groups of three, X, X, Y.
From Petros Hadjicostas, Nov 17 2019: (Start)
When we count diradical isomers, the starting compounds for each constant-isomer series are as follows (with the number of diradical isomers inside parentheses): C22H12 (1), C30H14 (1), C40H16 (1), C50H18 (2), C62H20 (4), C76H22 (4), C90H24 (12), C106H26 (19), C124H28 (19), C142H30 (46), C162H32 (70), C184H34 (70), C206H36 (162), C230H38 (239), C256H40 (239), C282H42 (504), C310H44 (726), C340H46 (726), C370H48 (1471), C402H50 (2062), C436H52 (2062).
For some mysterious reason, the ground compounds of each series, which are listed above, obey the general formula C_{2*b(s)} H_{2*s}, where b(s) = A096777(s), for s = 6, 7, ..., 26.
Given a ground compound in a constant-isomer series of compounds, the series is determined by the operator P(C_n H_s) -> C_{n + 2*s + 6} H_{s + 6}. For example, the series corresponding to the C22H12 is C22H12 -> C52H18 -> C94H24 -> C148H30 -> C214H36 -> ...
As it can be seen in Dias (1996), the same numbers appear for the number of monoradical isomers for odd-carbon compounds starting with C13H9. See also Table 1 in Dias (1991, p. 128). Here we have the following starting compounds for each constant-isomer series (with the number of monoradical isomers in parentheses): C13H9 (1), C19H11 (1), C27H13(1), C35H15 (2), C45H17 (4), C57H19 (4), C69H21 (12), C83H23 (19), C99H25 (19), C115H27 (46), ...
For additional interpretations of these numbers (e.g., in terms of tetraradicals), see the equations and theory in Dias (1993).
The "base formulas for the smallest one-isomer polyradicals" appear in Section 7.6 in Dias (1996), which explains why we begin with C22H12 for the number of diradical isomers and with C13H9 for the number of monoradicals.
(End)

References

  • J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.

Crossrefs

Showing 1-8 of 8 results.