A164486 Duplicate of A084684.
1, 2, 4, 8, 13, 20, 28, 38, 49, 62, 76, 92, 109, 128, 148, 170, 193, 218, 244, 272, 301, 332, 364, 398
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = x + 3*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 27*x^6 + 37*x^7 + 48*x^8 + ... a(4)=12 since the compositions of floor(3*(4+1)/2) = 7 into exactly 3 positive integers each no more than 4 are 1+2+4, 1+3+3, 1+4+2, 2+1+4, 2+2+3, 2+3+3, 2+4+1, 3+1+3, 3+2+2, 3+3+1, 4+1+2, 4+2+1. From _Philippe Deléham_, Dec 17 2011: (Start) a(1) = 1 = 1^3; a(1) + a(3) = 1 + 7 = 2^3; a(1) + a(3) + a(5) = 1 + 7 + 19 = 3^3; a(1) + a(3) + a(5) + a(7) = 1 + 7 + 19 + 37 = 4^3; a(1) + a(3) + a(5) + a(7) + a(9) = 1 + 7 + 19 + 37 + 61 = 5^3; ... (End)
a077043 n = a077043_list !! n a077043_list = scanl (+) 0 a001651_list -- Reinhard Zumkeller, Jan 06 2014
[Ceiling(n^2*3/4): n in [0..60]]; // Vincenzo Librandi, Jun 29 2011
A077043:=n->ceil(3*n^2/4); seq(A077043(n), n=0..60); # Wesley Ivan Hurt, Jan 21 2014
Table[Ceiling[(3n^2)/4], {n,0,60}] (* or *) LinearRecurrence[{2,0,-2,1}, {0,1,3,7}, 60] (* Harvey P. Dale, Dec 16 2012 *)
{a(n) = n^2 - (n^2 \ 4)}; /* Michael Somos, Jun 29 2011 */
G.f. = -1 + 2*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 26*x^6 + 36*x^7 + 47*x^8 + ... - _Michael Somos_, Sep 08 2023
a:=[-1,0,2,6]; [n le 4 select a[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..45]]; // Marius A. Burtea, Feb 02 2020
LinearRecurrence[{2, 0, -2, 1}, {-1, 0, 2, 6}, 100] (* Amiram Eldar, Feb 02 2020 *) a[n_] := Floor[(n^2 - 1)*3/4]; (* Michael Somos, Sep 08 2023 *)
Vec(-(1 - 2*x - 2*x^2) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 03 2020
{a(n) = (n^2 - 1)*3\4}; /* Michael Somos, Sep 08 2023 */
a(2)=5; the 5 prime signatures / partitions are: {3,1,1,1}, {2,2,2}, {2,2,1,1}, {2,1,1,1} and {1,1,1,1,1,1}. G.f. = x + 5*x^2 + 10*x^3 + 17*x^4 + 25*x^5 + 35*x^6 + 46*x^7 + ... - _Michael Somos_, Sep 08 2023
[((-1)^n+12*n+6*n^2-9)/8: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
a[1] = 1; a[n_] := a[n] = a[n - 1] + Floor[3 n/2] + 1 ; Array[a, 51] (* Michael De Vlieger, Sep 01 2016 *) a[n_] := Floor[(3*(n+1)^2 - 7)/4]; (* Michael Somos, Sep 08 2023 *)
Vec(x*(1+3*x-x^3)/((1-x)^3*(1+x)) + O(x^60)) \\ Colin Barker, Sep 01 2016
{a(n) = (3*(n+1)^2 - 7)\4}; /* Michael Somos, Sep 09 2023 */
CoefficientList[ Series[-(4x^4 +x^3 +x^2 +1)/((x -1)^3 (x^2 +x +1)), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, -1, 1, -2, 1}, {1, 2, 4, 8, 16}, 50] (* Robert G. Wilson v, Jul 18 2018 *)
Comments