cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A139597 A139278(n) followed by A139274(n+1).

Original entry on oeis.org

0, 7, 15, 30, 46, 69, 93, 124, 156, 195, 235, 282, 330, 385, 441, 504, 568, 639, 711, 790, 870, 957, 1045, 1140, 1236, 1339, 1443, 1554, 1666, 1785, 1905, 2032, 2160, 2295, 2431, 2574, 2718, 2869, 3021, 3180, 3340, 3507, 3675, 3850
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7,... and the line from 15, in the direction 15, 46,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 7
15, 30
46, 69
93, 124
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + 7n, 8*(n+1)^2 - (n+1).
a(n) = (3-3*(-1)^n+14*n+8*n^2)/4. a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). G.f.: x*(7+x)/((1-x)^3*(1+x)). [Colin Barker, Jul 22 2012]

A139275 a(n) = n*(8*n+1).

Original entry on oeis.org

0, 9, 34, 75, 132, 205, 294, 399, 520, 657, 810, 979, 1164, 1365, 1582, 1815, 2064, 2329, 2610, 2907, 3220, 3549, 3894, 4255, 4632, 5025, 5434, 5859, 6300, 6757, 7230, 7719, 8224, 8745, 9282, 9835, 10404, 10989, 11590, 12207, 12840
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9,..., in the square spiral whose vertices are the triangular numbers A000217.

Crossrefs

Programs

  • Mathematica
    Table[n (8 n + 1), {n, 0, 40}] (* Bruno Berselli, Sep 21 2016 *)
    LinearRecurrence[{3,-3,1},{0,9,34},50] (* Harvey P. Dale, Apr 21 2020 *)
  • PARI
    a(n) = n*(8*n+1); \\ Altug Alkan, Sep 21 2016

Formula

a(n) = 8*n^2 + n.
Sequences of the form a(n) = 8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 7 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = A000217(5*n) - A000217(3*n). - Bruno Berselli, Sep 21 2016
Sum_{n>=1} 1/a(n) = 8 - (1+sqrt(2))*Pi/2 - 4*log(2) - sqrt(2) * log(1+sqrt(2)) = 0.1887230016056779928... . - Vaclav Kotesovec, Sep 21 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(7*x + 9)/(1-x)^3.
E.g.f.: (8*x^2 + 9*x)*exp(x). (End)

A139271 a(n) = 2*n*(4*n-3).

Original entry on oeis.org

0, 2, 20, 54, 104, 170, 252, 350, 464, 594, 740, 902, 1080, 1274, 1484, 1710, 1952, 2210, 2484, 2774, 3080, 3402, 3740, 4094, 4464, 4850, 5252, 5670, 6104, 6554, 7020, 7502, 8000, 8514, 9044, 9590, 10152, 10730, 11324, 11934, 12560, 13202, 13860, 14534, 15224
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A033585 in the same spiral.
Twice decagonal numbers (or twice 10-gonal numbers). - Omar E. Pol, May 15 2008
a(n) is the number of walks in a cubic lattice of n dimensions that reach the point of origin for the first time after 4 steps. - Shel Kaphan, Mar 20 2023

Crossrefs

Cf. A001107.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=16). - Bruno Berselli, Jun 10 2013
Row n=2 of A361397.

Programs

Formula

a(n) = 8*n^2 - 6*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = A001107(n)*2. - Omar E. Pol, May 15 2008
a(n) = 16*n + a(n-1) - 14 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: (2*x)*(7*x+1)/(1-x)^3.
E.g.f.: (8*x^2 + 2*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = Pi/12 + log(2)/2. - Amiram Eldar, Mar 28 2023

Extensions

Corrected by Harvey P. Dale, Sep 26 2016

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A139278 a(n) = n*(8*n+7).

Original entry on oeis.org

0, 15, 46, 93, 156, 235, 330, 441, 568, 711, 870, 1045, 1236, 1443, 1666, 1905, 2160, 2431, 2718, 3021, 3340, 3675, 4026, 4393, 4776, 5175, 5590, 6021, 6468, 6931, 7410, 7905, 8416, 8943, 9486, 10045, 10620, 11211, 11818, 12441, 13080
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the segment (0, 15) together with the line from 15, in the direction 15, 46, ..., in the square spiral whose vertices are the triangular numbers A000217.

Crossrefs

Programs

  • Mathematica
    Table[n (8 n + 7), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 46}, 50] (* Harvey P. Dale, Oct 07 2015 *)
  • PARI
    a(n)=n*(8*n+7) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 8*n^2 + 7*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-1 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(x+15)/(1-x)^3.
E.g.f.: (8*x^2 + 15*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/49 + (sqrt(2)+1)*Pi/14 - 4*log(2)/7 - sqrt(2)*log(sqrt(2)+1)/7. - Amiram Eldar, Mar 17 2022

A139272 a(n) = n*(8*n-5).

Original entry on oeis.org

0, 3, 22, 57, 108, 175, 258, 357, 472, 603, 750, 913, 1092, 1287, 1498, 1725, 1968, 2227, 2502, 2793, 3100, 3423, 3762, 4117, 4488, 4875, 5278, 5697, 6132, 6583, 7050, 7533, 8032, 8547, 9078, 9625, 10188, 10767, 11362, 11973, 12600
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 3, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139276 in the same spiral.

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=16: see Comments lines of A226492.

Programs

Formula

a(n) = 8*n^2 - 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 13 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13*x + 3)/(1-x)^3.
E.g.f.: (8*x^2 + 3*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = ((sqrt(2)-1)*Pi + 8*log(2) - 2*sqrt(2)*log(sqrt(2)+1))/10. - Amiram Eldar, Mar 17 2022

A139276 a(n) = n*(8*n+3).

Original entry on oeis.org

0, 11, 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 2646, 2945, 3260, 3591, 3938, 4301, 4680, 5075, 5486, 5913, 6356, 6815, 7290, 7781, 8288, 8811, 9350, 9905, 10476, 11063, 11666, 12285, 12920
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11,..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139272 in the same spiral.

Examples

			a(1)=16*1+0-5=11; a(2)=16*2+11-5=38; a(3)=16*3+38-5=81. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 3*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-5 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(5*x + 11)/(1-x)^3.
E.g.f.: (8*x^2 + 11*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/9 - (sqrt(2)-1)*Pi/6 - 4*log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3. - Amiram Eldar, Mar 17 2022

A154260 Numbers of the form m*(4*m +- 1)/2.

Original entry on oeis.org

0, 7, 9, 30, 34, 69, 75, 124, 132, 195, 205, 282, 294, 385, 399, 504, 520, 639, 657, 790, 810, 957, 979, 1140, 1164, 1339, 1365, 1554, 1582, 1785, 1815, 2032, 2064, 2295, 2329, 2574, 2610, 2869, 2907, 3180, 3220, 3507, 3549, 3850, 3894, 4209, 4255, 4584
Offset: 1

Views

Author

Keywords

Comments

Also integers of the form Sum_{k = 1..j} k/4 = j*(j + 1)/8. - Alonso del Arte, Jan 20 2012
Numbers h such that 32*h + 1 is a square. - Bruno Berselli, Mar 30 2014
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(16*n))*(1 - q^(16*n-7))*(1 - q^(16*n-9)) = 1 - q^7 - q^9 + q^30 + q^34 - q^69 - q^75 + + - - .... - Peter Bala, Dec 24 2024

Crossrefs

Cf. similar sequences listed in A219257 and A299645.

Programs

  • Magma
    k:=8; f:=func; [0] cat [f(n*m): m in [-1, 1], n in [1..25]]; // Bruno Berselli, Nov 14 2012
    
  • Mathematica
    Select[Union[Flatten[Table[{n (4n - 1)/2, n (4n + 1)/2}, {n, 0, 199}]]], IntegerQ] (* Alonso del Arte, Jan 20 2012 *)
  • PARI
    print1(0);forstep(n=2,1e2,2,print1(", "n*(4*n-1)/2", "n*(4*n+1)/2)) \\ Charles R Greathouse IV, Jan 20 2012
    
  • PARI
    print1(s=0);for(n=1,1e3,s+=n/4;if(denominator(s)==1,print1(s", "))) \\ Charles R Greathouse IV, Jan 20 2012
    
  • Python
    def A154260(n): return (n>>1)*((n<<2)+(-3 if n&1 else -1)) # Chai Wah Wu, Mar 11 2025

Formula

From R. J. Mathar, Jan 07 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(7 + 2x + 7x^2)/((1+x)^2*(1-x)^3). (End)
From G. C. Greubel, Sep 08 2016: (Start)
a(n) = (1/4)*(8*n^2 + 6*(-1)^n*n - 8*n - 3*(-1)^n + 3).
E.g.f.: (1/4)*( (3 + 8*x^2)*exp(x) - 3*(1 + 2*x)*exp(-x) ). (End)
From Amiram Eldar, Mar 17 2022: (Start)
Sum_{n>=2} 1/a(n) = 8 - (sqrt(2)+1)*Pi.
Sum_{n>=2} (-1)^n/a(n) = 2*sqrt(2)*log(sqrt(2)+1) - 8*(1-log(2)). (End)
a(n) = (n-1)*(4*n-3)/2 if n is odd and a(n) = n*(4*n-1)/2 if n is even. - Chai Wah Wu, Mar 11 2025

A139277 a(n) = n*(8*n+5).

Original entry on oeis.org

0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139273 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024

A340171 List of X-coordinates of point moving along one of the arms of a counterclockwise double square spiral; A340172 gives Y-coordinates.

Original entry on oeis.org

0, 1, 1, 0, -1, -2, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 3, 3, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -5
Offset: 0

Views

Author

Rémy Sigrist, Dec 30 2020

Keywords

Comments

The odd function f such that f(n) = (a(n), A340172(n)) for any n >= 0 will visit exactly once every lattice point (so it is a bijection from Z to Z^2).

Examples

			The spiral starts as follows:
      +-----+-----+-----+-----+-----+
      .                             |
      .                             |
      .     +-----+-----+-----+     +
      .     |5     4     3    |2    |
      .     |                 |     |
            +     +-----+-----+     +
            |6    |      0     1    |     .
            |     |                 |     .
            +     +-----+-----+-----+     .
            |7                            .
            |                             .
            +-----+-----+-----+-----+-----+
             8     9     10    11    12    13
- so a(0) = a(3) = a(10) = 0,
-    a(1) = a(2) = a(11) = 1.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

abs(a(n+1)-a(n)) + abs(A340172(n+1)-A340172(n)) = 1.
a(n) = A340172(n) iff n belongs to A001105.
a(n) = -A340172(n) iff n belongs to A046092.
a(n) = 2*A340172(n) iff n belongs to A139274.
2*a(n) = A340172(n) iff n belongs to A139275.
a(n) * A340172(n) = 0 iff n belongs to A000217.
a(n) = 0 iff n belongs to A014105.
Showing 1-10 of 11 results. Next