cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A139593 A139276(n) followed by A139272(n+1).

Original entry on oeis.org

0, 3, 11, 22, 38, 57, 81, 108, 140, 175, 215, 258, 306, 357, 413, 472, 536, 603, 675, 750, 830, 913, 1001, 1092, 1188, 1287, 1391, 1498, 1610, 1725, 1845, 1968, 2096, 2227, 2363, 2502, 2646, 2793, 2945, 3100, 3260, 3423, 3591, 3762
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 3, ... and the same line from 0, in the direction 0, 11, ..., in the square spiral whose vertices are the triangular numbers A000217.
A139593 appears (both numerically and via back of an envelope algebra, but not a publishable proof) to be the cumulative sum of A047470. - Markus J. Q. Roberts, Jul 12 2009

Examples

			Array begins:
   0,   3;
  11,  22;
  38,  57;
  81, 108;
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,3,11,22},50] (* Harvey P. Dale, Feb 09 2019 *)

Formula

Array read by rows: row n gives 8*n^2 + 3n, 8*(n+1)^2 - 5(n+1).
From Colin Barker, Sep 15 2013: (Start)
a(n) = (-1 + (-1)^n + 6*n + 8*n^2)/4.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(5*x+3) / ((x-1)^3*(x+1)). (End)

Extensions

Edited by Omar E. Pol, Jul 13 2009

A139275 a(n) = n*(8*n+1).

Original entry on oeis.org

0, 9, 34, 75, 132, 205, 294, 399, 520, 657, 810, 979, 1164, 1365, 1582, 1815, 2064, 2329, 2610, 2907, 3220, 3549, 3894, 4255, 4632, 5025, 5434, 5859, 6300, 6757, 7230, 7719, 8224, 8745, 9282, 9835, 10404, 10989, 11590, 12207, 12840
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9,..., in the square spiral whose vertices are the triangular numbers A000217.

Crossrefs

Programs

  • Mathematica
    Table[n (8 n + 1), {n, 0, 40}] (* Bruno Berselli, Sep 21 2016 *)
    LinearRecurrence[{3,-3,1},{0,9,34},50] (* Harvey P. Dale, Apr 21 2020 *)
  • PARI
    a(n) = n*(8*n+1); \\ Altug Alkan, Sep 21 2016

Formula

a(n) = 8*n^2 + n.
Sequences of the form a(n) = 8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 7 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = A000217(5*n) - A000217(3*n). - Bruno Berselli, Sep 21 2016
Sum_{n>=1} 1/a(n) = 8 - (1+sqrt(2))*Pi/2 - 4*log(2) - sqrt(2) * log(1+sqrt(2)) = 0.1887230016056779928... . - Vaclav Kotesovec, Sep 21 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(7*x + 9)/(1-x)^3.
E.g.f.: (8*x^2 + 9*x)*exp(x). (End)

A139271 a(n) = 2*n*(4*n-3).

Original entry on oeis.org

0, 2, 20, 54, 104, 170, 252, 350, 464, 594, 740, 902, 1080, 1274, 1484, 1710, 1952, 2210, 2484, 2774, 3080, 3402, 3740, 4094, 4464, 4850, 5252, 5670, 6104, 6554, 7020, 7502, 8000, 8514, 9044, 9590, 10152, 10730, 11324, 11934, 12560, 13202, 13860, 14534, 15224
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A033585 in the same spiral.
Twice decagonal numbers (or twice 10-gonal numbers). - Omar E. Pol, May 15 2008
a(n) is the number of walks in a cubic lattice of n dimensions that reach the point of origin for the first time after 4 steps. - Shel Kaphan, Mar 20 2023

Crossrefs

Cf. A001107.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=16). - Bruno Berselli, Jun 10 2013
Row n=2 of A361397.

Programs

Formula

a(n) = 8*n^2 - 6*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = A001107(n)*2. - Omar E. Pol, May 15 2008
a(n) = 16*n + a(n-1) - 14 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: (2*x)*(7*x+1)/(1-x)^3.
E.g.f.: (8*x^2 + 2*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = Pi/12 + log(2)/2. - Amiram Eldar, Mar 28 2023

Extensions

Corrected by Harvey P. Dale, Sep 26 2016

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A139278 a(n) = n*(8*n+7).

Original entry on oeis.org

0, 15, 46, 93, 156, 235, 330, 441, 568, 711, 870, 1045, 1236, 1443, 1666, 1905, 2160, 2431, 2718, 3021, 3340, 3675, 4026, 4393, 4776, 5175, 5590, 6021, 6468, 6931, 7410, 7905, 8416, 8943, 9486, 10045, 10620, 11211, 11818, 12441, 13080
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the segment (0, 15) together with the line from 15, in the direction 15, 46, ..., in the square spiral whose vertices are the triangular numbers A000217.

Crossrefs

Programs

  • Mathematica
    Table[n (8 n + 7), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 46}, 50] (* Harvey P. Dale, Oct 07 2015 *)
  • PARI
    a(n)=n*(8*n+7) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 8*n^2 + 7*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-1 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(x+15)/(1-x)^3.
E.g.f.: (8*x^2 + 15*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/49 + (sqrt(2)+1)*Pi/14 - 4*log(2)/7 - sqrt(2)*log(sqrt(2)+1)/7. - Amiram Eldar, Mar 17 2022

A226492 a(n) = n*(11*n-5)/2.

Original entry on oeis.org

0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0

Views

Author

Bruno Berselli, Jun 11 2013

Keywords

Comments

Sequences of numbers of the form n*(n*k - k + 6)/2:
. k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874;
. k=11: a(n);
. k=12: A094159;
. k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...;
. k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...;
. k=15: A152773;
. k=16: A139272;
. k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...;
. k=18: A152751;
. k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...;
. k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...;
. k=21: A152759;
. k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...;
. k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...;
. k=24: A152767;
. k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...;
. k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...;
. k=27: A153783;
. k=28: A195021;
. k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...;
. k=30: A153448;
. k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...;
. k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...;
. k=33: A153875.
Also:
a(n) - n = A180223(n);
a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) - 2*n = A051865(n);
a(n) + 2*n = A022268(n);
a(n) - 3*n = A152740(n-1);
a(n) + 3*n = A022269(n);
a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...;
a(n) + 4*n = A254963(n);
a(n) - n*(n-1)/2 = A147874(n+1);
a(n) + n*(n-1)/2 = A094159(n) (case k=12);
a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9);
a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13);
a(n) - n*(n+1)/2 = A135706(n);
a(n) + n*(n+1)/2 = A033579(n);
a(n) - n*(n+1) = A051682(n);
a(n) + n*(n+1) = A186030(n);
a(n) - n^2 = A062708(n);
a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc.
Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891...

Crossrefs

Cf. sequences in Comments lines.
First differences are in A017425.

Programs

  • Magma
    [n*(11*n-5)/2: n in [0..50]];
    
  • Magma
    I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (11 n - 5)/2, {n, 0, 50}]
    CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x*(3+8*x)/(1-x)^3.
a(n) + a(-n) = A033584(n).
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(6 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A180223(n). (End)

A139274 a(n) = n*(8*n-1).

Original entry on oeis.org

0, 7, 30, 69, 124, 195, 282, 385, 504, 639, 790, 957, 1140, 1339, 1554, 1785, 2032, 2295, 2574, 2869, 3180, 3507, 3850, 4209, 4584, 4975, 5382, 5805, 6244, 6699, 7170, 7657, 8160, 8679, 9214, 9765, 10332, 10915, 11514, 12129, 12760, 13407, 14070, 14749
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the triangular numbers A000217.
Polygonal number connection: 2*P_n + 5*S_n where P_n is the n-th pentagonal number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010

Examples

			a(1) = 16*1 + 0 - 9 = 7; a(2) = 16*2 + 7 - 9 = 30; a(3) = 16*3 + 30 - 9 = 69. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = (1/3) * Sum_{i=n..(7*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(9*x+7)/(1-x)^3.
E.g.f.: (8*x^2 + 7*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + sqrt(2)*log(sqrt(2)+1) - (sqrt(2)+1)*Pi/2. - Amiram Eldar, Mar 18 2022

A139276 a(n) = n*(8*n+3).

Original entry on oeis.org

0, 11, 38, 81, 140, 215, 306, 413, 536, 675, 830, 1001, 1188, 1391, 1610, 1845, 2096, 2363, 2646, 2945, 3260, 3591, 3938, 4301, 4680, 5075, 5486, 5913, 6356, 6815, 7290, 7781, 8288, 8811, 9350, 9905, 10476, 11063, 11666, 12285, 12920
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11,..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139272 in the same spiral.

Examples

			a(1)=16*1+0-5=11; a(2)=16*2+11-5=38; a(3)=16*3+38-5=81. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 3*n.
Sequences of the form a(n)=8*n^2+c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n)= 3a(n-1)-3a(n-2)+a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n+a(n-1)-5 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: x*(5*x + 11)/(1-x)^3.
E.g.f.: (8*x^2 + 11*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 8/9 - (sqrt(2)-1)*Pi/6 - 4*log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3. - Amiram Eldar, Mar 17 2022

A299989 Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0.

Original entry on oeis.org

0, 1, 0, 3, 4, 1, 0, 9, 24, 22, 8, 1, 0, 27, 108, 171, 136, 57, 12, 1, 0, 81, 432, 972, 1200, 886, 400, 108, 16, 1, 0, 243, 1620, 4725, 7920, 8430, 5944, 2810, 880, 175, 20, 1, 0, 729, 5832, 20898, 44280, 61695, 59472, 40636, 19824, 6855, 1640, 258, 24, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots.
Row sums gives A001018.

Examples

			The triangle T(n, k) begins:
n\k 0     1      2      3       4       5       6      7        8       9
0:  0     1
1:  0     3      4      1
2:  0     9     24     22       8       1
3:  0    27    108    171     136      57      12       1
4:  0    81    432    972    1200     886     400     108      16       1
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.

Crossrefs

Row 2: row 5 of A158454.
Row 3: row 2 of A220665.
Row 4: row 5 of A219234.

Programs

  • Mathematica
    row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
  • Maxima
    g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$
    a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$
    T : []$
    for i:1 thru 11 do
      T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$
    T;
    
  • PARI
    T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k);
    tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 03 2018

Formula

T(n,k) = coefficients of x*(x^2 + 4*x + 3)^n.
T(n,k) = T(n-1,k-2) + 4*T(n-1,k-1) + 3*T(n-1,k), with T(n,0) = 0, T(n,1) = 3^n and T(n,2) = 4*n*3^(n-1).
T(n,n+k+1) = A152842(2*n,n+k) and T(n,n-k) = A152842(2*n,n+k+1), for n >= k >= 0.
T(n,1) = A000244(n).
T(n,2) = A120908(n).
T(n,n+1) = A069835(n).
T(n,2*n-1) = A139272(n).
T(n,2*n) = A008586(n).
T(n,2*n-2) = A140138(4*n) = A185872(2n,2) for n >= 1.
G.f.: x/(1 - y*(x^2 + 4*x + 3)).

Extensions

Typo in row 6 corrected by Jean-François Alcover, Mar 16 2018

A139277 a(n) = n*(8*n+5).

Original entry on oeis.org

0, 13, 42, 87, 148, 225, 318, 427, 552, 693, 850, 1023, 1212, 1417, 1638, 1875, 2128, 2397, 2682, 2983, 3300, 3633, 3982, 4347, 4728, 5125, 5538, 5967, 6412, 6873, 7350, 7843, 8352, 8877, 9418, 9975, 10548, 11137, 11742, 12363, 13000
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139273 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 8*n^2 + 5*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x*{c+8 + (8-c)*x}/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 3 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
Sum_{n>=1} 1/a(n) = (sqrt(2)-1)*Pi/10 - 4*log(2)/5 + sqrt(2)*log(sqrt(2)+1)/5 + 8/25. - Amiram Eldar, Mar 18 2022
E.g.f.: exp(x)*x*(13 + 8*x). - Elmo R. Oliveira, Dec 15 2024
Showing 1-10 of 12 results. Next