A303739
Numbers k such that 9*k^2 + 3*k + 1 (A082040) is prime.
Original entry on oeis.org
1, 2, 4, 5, 7, 8, 9, 11, 18, 19, 22, 23, 25, 26, 30, 33, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 63, 64, 77, 82, 93, 96, 103, 112, 114, 116, 117, 119, 123, 126, 127, 134, 135, 138, 142, 145, 149, 151, 152, 163, 165, 175, 177, 179, 180, 189, 193, 194, 201, 203
Offset: 1
-
Filtered([0..300],n->IsPrime(9*n^2+3*n+1));
-
select(n->isprime(9*n^2+3*n+1),[$0..300]);
A019557
Coordination sequence for G_2 lattice.
Original entry on oeis.org
1, 12, 30, 48, 66, 84, 102, 120, 138, 156, 174, 192, 210, 228, 246, 264, 282, 300, 318, 336, 354, 372, 390, 408, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 642, 660, 678, 696, 714, 732, 750, 768, 786, 804, 822, 840, 858, 876, 894, 912, 930, 948, 966, 984, 1002, 1020, 1038, 1056
Offset: 0
Michael Baake (mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de)
From _Peter M. Chema_, Mar 20 2016: (Start)
Illustration of initial terms:
o
o o
o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o
o o
o
1 12 30 48
Compare to A003154, A045946, and A270700. (End)
- Michael Baake and Uwe Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), pp. 253-256
- Roland Bacher, Pierre de la Harpe, and Boris Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Séries 1) (1997), pp. 1137-1142.
- Roland Bacher, Pierre de la Harpe, and Boris Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, Annales de l'institut Fourier, 49 no. 3 (1999), pp. 727-762.
- Tom Karzes, Tiling Coordination Sequences.
- N. J. A. Sloane, Illustration of layers 0,1,2 in the graph of the Dual(3.12.12) tiling. Centered at a 12-valent node. Note that some of the blue edges are not part of the underlying graph.
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings. [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] =
A008486; [3.3.3.3.6] =
A298014,
A298015,
A298016; [3.3.3.4.4] =
A298022,
A298024; [3.3.4.3.4] =
A008574,
A296368; [3.6.3.6] =
A298026,
A298028; [3.4.6.4] =
A298029,
A298031,
A298033; [3.12.12] =
A019557,
A298035; [4.4.4.4] =
A008574; [4.6.12] =
A298036,
A298038,
A298040; [4.8.8] =
A022144,
A234275; [6.6.6] =
A008458.
-
CoefficientList[Series[(1 + 10 x + 7 x^2)/(1 - x)^2, {x, 0, 59}], x] (* Michael De Vlieger, Mar 21 2016 *)
-
my(x='x+O('x^100)); Vec((1+10*x+7*x^2)/(1-x)^2) \\ Altug Alkan, Mar 20 2016
A069131
Centered 18-gonal numbers.
Original entry on oeis.org
1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1
a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- John Elias, Illustration of Initial Terms: Triangular & Hexagonal Configurations.
- Lamine Ngom, An origin of A069131 (illustration).
- Leo Tavares, Illustration: Tri-Hexagons.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. centered polygonal numbers listed in
A069190.
Cf.
A000217,
A028387,
A195042,
A016945,
A002378,
A082040,
A304163,
A003215,
A247792,
A016777,
A016778,
A016790,
A010008,
A008600,
A002061.
Cf.
A000290,
A139278,
A069129,
A062786,
A033996,
A060544,
A027468,
A016754,
A124080,
A069099,
A152740,
A049598,
A005891,
A152741,
A001844,
A163756,
A005448,
A194715.
-
[9*n^2 - 9*n + 1 : n in [1..50]]; // Wesley Ivan Hurt, May 05 2021
-
FoldList[#1 + #2 &, 1, 18 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{3,-3,1},{1,19,55},50] (* Harvey P. Dale, Jan 20 2014 *)
-
a(n)=9*n^2-9*n+1 \\ Charles R Greathouse IV, Oct 07 2015
A082039
Symmetric square array defined by T(n,k) = k^2*n^2 + k*n + 1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 21, 13, 1, 1, 21, 43, 43, 21, 1, 1, 31, 73, 91, 73, 31, 1, 1, 43, 111, 157, 157, 111, 43, 1, 1, 57, 157, 241, 273, 241, 157, 57, 1, 1, 73, 211, 343, 421, 421, 343, 211, 73, 1, 1, 91, 273, 463, 601, 651, 601, 463, 273, 91, 1, 1, 111, 343, 601, 813, 931, 931, 813, 601, 343, 111, 1
Offset: 0
Square array T(n,k) begins:
1 1 1 1 1 1 ...
1 3 7 13 21 31 ...
1 7 21 43 73 111 ...
1 13 43 91 157 241 ...
1 21 73 157 273 421 ...
...
A304836
a(n) = 27*n^2 - 51*n + 24, n>=1.
Original entry on oeis.org
0, 30, 114, 252, 444, 690, 990, 1344, 1752, 2214, 2730, 3300, 3924, 4602, 5334, 6120, 6960, 7854, 8802, 9804, 10860, 11970, 13134, 14352, 15624, 16950, 18330, 19764, 21252, 22794, 24390, 26040, 27744, 29502, 31314, 33180, 35100, 37074, 39102, 41184, 43320, 45510, 47754, 50052, 52404
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- P. Manuel, R. Bharati, I. Rajasingh, and Chris Monica M, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms, 6, 2008, 20-27.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50], n->27*n^2-51*n+24); # Muniru A Asiru, May 21 2018
-
seq(27*n^2-51*n+24, n = 1 .. 45);
-
concat(0, Vec(6*x^2*(5 + 4*x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, May 23 2018
A304837
a(n) = 6*(n - 1)*(81*n - 104) for n >= 1.
Original entry on oeis.org
0, 348, 1668, 3960, 7224, 11460, 16668, 22848, 30000, 38124, 47220, 57288, 68328, 80340, 93324, 107280, 122208, 138108, 154980, 172824, 191640, 211428, 232188, 253920, 276624, 300300, 324948, 350568, 377160, 404724, 433260, 462768, 493248, 524700, 557124, 590520, 624888, 660228, 696540, 733824, 772080, 811308
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- P. Manuel, R. Bharati, I. Rajasingh, and Chris Monica M, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms, 6, 2008, 20-27.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50], n->486*n^2-1110*n+624); # Muniru A Asiru, May 22 2018
-
seq(624-1110*n+486*n^2, n = 1 .. 45);
-
Table[6 (n - 1) (81 n - 104), {n, 1, 50}] (* Bruno Berselli, May 22 2018 *)
-
concat(0, Vec(12*x^2*(29 + 52*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, May 23 2018
A304838
a(n) = 1944*n^2 - 5016*n + 3138 (n >= 1).
Original entry on oeis.org
66, 882, 5586, 14178, 26658, 43026, 63282, 87426, 115458, 147378, 183186, 222882, 266466, 313938, 365298, 420546, 479682, 542706, 609618, 680418, 755106, 833682, 916146, 1002498, 1092738, 1186866, 1284882, 1386786, 1492578, 1602258, 1715826, 1833282, 1954626, 2079858
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- P. Manuel, R. Bharati, I. Rajasingh, and Chris Monica M, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms, 6, 2008, 20-27.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50], n->1944*n^2-5016*n+3138); # Muniru A Asiru, May 22 2018
-
seq(3138 - 5016*n + 1944*n^2, n = 1 .. 45);
-
Table[1944 n^2 - 5016 n + 3138, {n, 1, 40}] (* Bruno Berselli, May 22 2018 *)
LinearRecurrence[{3,-3,1},{66,882,5586},40] (* Harvey P. Dale, Dec 02 2018 *)
-
Vec(6*x*(11 + 114*x + 523*x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018
A245557
Irregular triangle read by rows: T(n,k) (n>=0, 0 <= k <= 2n) = number of triples (u,v,w) with entries in the range 0 to n which have some pair adding up to k and in which at least one of u,v,w is equal to n.
Original entry on oeis.org
1, 3, 6, 4, 3, 6, 15, 12, 7, 3, 6, 9, 24, 21, 18, 10, 3, 6, 9, 12, 33, 30, 27, 24, 13, 3, 6, 9, 12, 15, 42, 39, 36, 33, 30, 16, 3, 6, 9, 12, 15, 18, 51, 48, 45, 42, 39, 36, 19, 3, 6, 9, 12, 15, 18, 21, 60, 57, 54, 51, 48, 45, 42, 22
Offset: 0
Triangle begins:
[1]
[3, 6, 4]
[3, 6, 15, 12, 7]
[3, 6, 9, 24, 21, 18, 10]
[3, 6, 9, 12, 33, 30, 27, 24, 13]
[3, 6, 9, 12, 15, 42, 39, 36, 33, 30, 16]
[3, 6, 9, 12, 15, 18, 51, 48, 45, 42, 39, 36, 19]
[3, 6, 9, 12, 15, 18, 21, 60, 57, 54, 51, 48, 45, 42, 22]
...
Example. Suppose n = 2. We find:
triple count pair-sums 0 1 2 3 4
-------------
002 3 0,2 3 3
012 6 1,2,3 6 6 6
112 3 2,3 3 3
022 3 2,4 3 3
122 3 3,4 3 3
222 1 4 1
-------------
Totals: 3 6 15 12 7, which is row 2 of the triangle.
Partial sums of the rows gives
A245556.
A303740
Primes of the form 9*k^2 + 3*k + 1.
Original entry on oeis.org
13, 43, 157, 241, 463, 601, 757, 1123, 2971, 3307, 4423, 4831, 5701, 6163, 8191, 9901, 11131, 12433, 13807, 19183, 20023, 21757, 22651, 23563, 26407, 28393, 35911, 37057, 53593, 60763, 78121, 83233, 95791, 113233, 117307, 121453, 123553, 127807, 136531, 143263
Offset: 1
-
Filtered(List([0..300],n->9*n^2+3*n+1),IsPrime);
-
[a: n in [0..200] | IsPrime(a) where a is 9*n^2 +3*n+1 ];// Vincenzo Librandi, Jun 25 2018
-
select(isprime,[seq(9*n^2+3*n+1,n=0..500)]);
-
Select[Table[9 n^2 + 3 n + 1, {n, 0, 150}], PrimeQ] (* Vincenzo Librandi, Jun 25 2018 *)
A082041
a(n) = 16*n^2 + 4*n + 1.
Original entry on oeis.org
1, 21, 73, 157, 273, 421, 601, 813, 1057, 1333, 1641, 1981, 2353, 2757, 3193, 3661, 4161, 4693, 5257, 5853, 6481, 7141, 7833, 8557, 9313, 10101, 10921, 11773, 12657, 13573, 14521, 15501, 16513, 17557, 18633, 19741, 20881, 22053, 23257, 24493
Offset: 0
-
Table[16n^2+4n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,21,73},50] (* Harvey P. Dale, Sep 28 2024 *)
-
a(n)=16*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Showing 1-10 of 10 results.
Comments