cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A303739 Numbers k such that 9*k^2 + 3*k + 1 (A082040) is prime.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 9, 11, 18, 19, 22, 23, 25, 26, 30, 33, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 63, 64, 77, 82, 93, 96, 103, 112, 114, 116, 117, 119, 123, 126, 127, 134, 135, 138, 142, 145, 149, 151, 152, 163, 165, 175, 177, 179, 180, 189, 193, 194, 201, 203
Offset: 1

Views

Author

Muniru A Asiru, Jun 01 2018

Keywords

Comments

These are the indices of the primes in A082040.

Crossrefs

Cf. A082040, A303740 (corresponding primes).

Programs

  • GAP
    Filtered([0..300],n->IsPrime(9*n^2+3*n+1));
  • Maple
    select(n->isprime(9*n^2+3*n+1),[$0..300]);

A019557 Coordination sequence for G_2 lattice.

Original entry on oeis.org

1, 12, 30, 48, 66, 84, 102, 120, 138, 156, 174, 192, 210, 228, 246, 264, 282, 300, 318, 336, 354, 372, 390, 408, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 642, 660, 678, 696, 714, 732, 750, 768, 786, 804, 822, 840, 858, 876, 894, 912, 930, 948, 966, 984, 1002, 1020, 1038, 1056
Offset: 0

Views

Author

Michael Baake (mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de)

Keywords

Comments

Also, coordination sequence of Dual(3.12.12) tiling with respect to a 12-valent node. - N. J. A. Sloane, Jan 22 2018
For n > 1, also the number of minimum vertex colorings of the n-Andrásfai graph. - Eric W. Weisstein, Mar 03 2024

Examples

			From _Peter M. Chema_, Mar 20 2016: (Start)
Illustration of initial terms:
                                                       o
                                                      o o
                                    o                o   o
                                   o o        o o o o o o o o o o
                  o           o o o o o o o    o   o       o   o
               o o o o         o o     o o      o o         o o
     o          o   o           o       o        o           o
               o o o o         o o     o o      o o         o o
                  o           o o o o o o o    o   o       o   o
                                   o o        o o o o o o o o o o
                                    o                o   o
                                                      o o
                                                       o
     1           12                30                 48
Compare to A003154, A045946, and A270700. (End)
		

Crossrefs

For partial sums see A082040.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 10 x + 7 x^2)/(1 - x)^2, {x, 0, 59}], x] (* Michael De Vlieger, Mar 21 2016 *)
  • PARI
    my(x='x+O('x^100)); Vec((1+10*x+7*x^2)/(1-x)^2) \\ Altug Alkan, Mar 20 2016

Formula

a(n) = 18*n - 6, n >= 1.
G.f.: (1 + 10*x + 7*x^2)/(1-x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*exp(x)*(3*x - 1) + 7.
a(n) = 6*A016789(n-1) for n >= 1.
a(n) = 2*a(n-1) - a(n-2) for n >= 3. (End)

A069131 Centered 18-gonal numbers.

Original entry on oeis.org

1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 18, 18, 0, 0, 0, ...]. Example: a(3) = 55 = (1, 2, 1) dot (1, 18, 18) = (1 + 36 + 18). - Gary W. Adamson, Aug 24 2010
Narayana transform (A001263) of [1, 18, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Lamine Ngom, Aug 19 2021: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777 (see illustration in links section).
a(n) is a bisection of A195042.
a(n) is a trisection of A028387.
a(n) + 1 is promic (A002378).
a(n) + 2 is a trisection of A002061.
a(n) + 9 is the arithmetic mean of its neighbors.
4*a(n) + 5 is a square: A016945(n)^2. (End)

Examples

			a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
		

Crossrefs

Programs

Formula

a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 18*A000217(n) + 1 = 9*A002378(n) + 1.
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n) = A082040(n) + A304163(n) - a(n-1) = A016778(n) + A016790(n) - a(n-1), n > 0.
a(n) + a(n+1) = 2*A247792(n) = A010008(n), n > 0.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n)= A000290(n) + A139278(n-1)
a(n) = A069129(n) + A002378(n-1)
a(n) = A062786(n) + 8*A000217(n-1)
a(n) = A062786(n) + A033996(n-1)
a(n) = A060544(n) + 9*A000217(n-1)
a(n) = A060544(n) + A027468(n-1)
a(n) = A016754(n-1) + 10*A000217(n-1)
a(n) = A016754(n-1) + A124080
a(n) = A069099(n) + 11*A000217(n-1)
a(n) = A069099(n) + A152740(n-1)
a(n) = A003215(n-1) + 12*A000217(n-1)
a(n) = A003215(n-1) + A049598(n-1)
a(n) = A005891(n-1) + 13*A000217(n-1)
a(n) = A005891(n-1) + A152741(n-1)
a(n) = A001844(n) + 14*A000217(n-1)
a(n) = A001844(n) + A163756(n-1)
a(n) = A005448(n) + 15*A000217(n-1)
a(n) = A005448(n) + A194715(n-1). (End)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A082039 Symmetric square array defined by T(n,k) = k^2*n^2 + k*n + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 21, 13, 1, 1, 21, 43, 43, 21, 1, 1, 31, 73, 91, 73, 31, 1, 1, 43, 111, 157, 157, 111, 43, 1, 1, 57, 157, 241, 273, 241, 157, 57, 1, 1, 73, 211, 343, 421, 421, 343, 211, 73, 1, 1, 91, 273, 463, 601, 651, 601, 463, 273, 91, 1, 1, 111, 343, 601, 813, 931, 931, 813, 601, 343, 111, 1
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Examples

			Square array T(n,k) begins:
  1  1  1   1   1   1 ...
  1  3  7  13  21  31 ...
  1  7 21  43  73 111 ...
  1 13 43  91 157 241 ...
  1 21 73 157 273 421 ...
  ...
		

Crossrefs

Rows include A054569, A002061, A082040, A082041.
Main diagonal is A059826.
Cf. A082038.

A304836 a(n) = 27*n^2 - 51*n + 24, n>=1.

Original entry on oeis.org

0, 30, 114, 252, 444, 690, 990, 1344, 1752, 2214, 2730, 3300, 3924, 4602, 5334, 6120, 6960, 7854, 8802, 9804, 10860, 11970, 13134, 14352, 15624, 16950, 18330, 19764, 21252, 22794, 24390, 26040, 27744, 29502, 31314, 33180, 35100, 37074, 39102, 41184, 43320, 45510, 47754, 50052, 52404
Offset: 1

Views

Author

Emeric Deutsch, May 21 2018

Keywords

Comments

a(n) is the number of edges in the hex derived network HDN1(n) from the Manuel et al. reference (see HDN1(4) in Fig. 8).

Crossrefs

Programs

  • GAP
    List([1..50], n->27*n^2-51*n+24); # Muniru A Asiru, May 21 2018
    
  • Maple
    seq(27*n^2-51*n+24, n = 1 .. 45);
  • PARI
    concat(0, Vec(6*x^2*(5 + 4*x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, May 23 2018

Formula

From Colin Barker, May 23 2018: (Start)
G.f.: 6*x^2*(5 + 4*x) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)

A304837 a(n) = 6*(n - 1)*(81*n - 104) for n >= 1.

Original entry on oeis.org

0, 348, 1668, 3960, 7224, 11460, 16668, 22848, 30000, 38124, 47220, 57288, 68328, 80340, 93324, 107280, 122208, 138108, 154980, 172824, 191640, 211428, 232188, 253920, 276624, 300300, 324948, 350568, 377160, 404724, 433260, 462768, 493248, 524700, 557124, 590520, 624888, 660228, 696540, 733824, 772080, 811308
Offset: 1

Views

Author

Emeric Deutsch, May 21 2018

Keywords

Comments

a(n) is the first Zagreb index of the hex derived network HDN1(n) from the Manuel et al. reference (see HDN1(4) in Fig. 8).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of HDN1(n) is M(HDN1(n); x, y) = 12*x^3*y^5 + (18*(n-2))*x^3*y^7 + (6*(3*n^2-9*n+7))*x^3*y^12 + 12*x^5*y^7 + 6*x^5*y^12 + (6*(n-3))*x^7*y^7 + (12*(n-2))*x^7*y^12 + (3*(n-2)*(3*n-5)*x^12*y^12.
54*a(n) + 529 is a square. - Bruno Berselli, May 22 2018

Crossrefs

Programs

  • GAP
    List([1..50], n->486*n^2-1110*n+624); # Muniru A Asiru, May 22 2018
    
  • Maple
    seq(624-1110*n+486*n^2, n = 1 .. 45);
  • Mathematica
    Table[6 (n - 1) (81 n - 104), {n, 1, 50}] (* Bruno Berselli, May 22 2018 *)
  • PARI
    concat(0, Vec(12*x^2*(29 + 52*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, May 23 2018

Formula

G.f.: 12*x^2*(29 + 52*x)/(1 - x)^3. - Bruno Berselli, May 22 2018

A304838 a(n) = 1944*n^2 - 5016*n + 3138 (n >= 1).

Original entry on oeis.org

66, 882, 5586, 14178, 26658, 43026, 63282, 87426, 115458, 147378, 183186, 222882, 266466, 313938, 365298, 420546, 479682, 542706, 609618, 680418, 755106, 833682, 916146, 1002498, 1092738, 1186866, 1284882, 1386786, 1492578, 1602258, 1715826, 1833282, 1954626, 2079858
Offset: 1

Views

Author

Emeric Deutsch, May 21 2018

Keywords

Comments

a(n) is the second Zagreb index of the hex derived network HDN1(n) from the Manuel et al. reference (see HDN1(4) in Fig. 8).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of HDN1(n) is M(HDN1(n);x,y) = 12*x^3*y^5 + (18*(n-2))*x^3*y^7 + (6*(3*n^2-9*n+7))*x^3*y^12 + 12*x^5*y^7 + 6*x^5*y^12 + (6*(n-3))*x^7*y^7 + (12*(n-2))*x^7*y^12 + (3*(n-2)*(3*n-5)*x^12*y^12.

Crossrefs

Programs

  • GAP
    List([1..50], n->1944*n^2-5016*n+3138); # Muniru A Asiru, May 22 2018
    
  • Maple
    seq(3138 - 5016*n + 1944*n^2, n = 1 .. 45);
  • Mathematica
    Table[1944 n^2 - 5016 n + 3138, {n, 1, 40}] (* Bruno Berselli, May 22 2018 *)
    LinearRecurrence[{3,-3,1},{66,882,5586},40] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    Vec(6*x*(11 + 114*x + 523*x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018

Formula

G.f.: 6*x*(11 + 114*x + 523*x^2)/(1 - x)^3. - Bruno Berselli, May 22 2018

A245557 Irregular triangle read by rows: T(n,k) (n>=0, 0 <= k <= 2n) = number of triples (u,v,w) with entries in the range 0 to n which have some pair adding up to k and in which at least one of u,v,w is equal to n.

Original entry on oeis.org

1, 3, 6, 4, 3, 6, 15, 12, 7, 3, 6, 9, 24, 21, 18, 10, 3, 6, 9, 12, 33, 30, 27, 24, 13, 3, 6, 9, 12, 15, 42, 39, 36, 33, 30, 16, 3, 6, 9, 12, 15, 18, 51, 48, 45, 42, 39, 36, 19, 3, 6, 9, 12, 15, 18, 21, 60, 57, 54, 51, 48, 45, 42, 22
Offset: 0

Views

Author

N. J. A. Sloane, Aug 04 2014

Keywords

Comments

The sum of (left-justified) rows 0 through n gives row n of A245556. For example, the sum of rows 0 thru 2 is 7, 12, 19, 12, 7, which is the n=2 row of A245556.

Examples

			Triangle begins:
[1]
[3, 6, 4]
[3, 6, 15, 12, 7]
[3, 6, 9, 24, 21, 18, 10]
[3, 6, 9, 12, 33, 30, 27, 24, 13]
[3, 6, 9, 12, 15, 42, 39, 36, 33, 30, 16]
[3, 6, 9, 12, 15, 18, 51, 48, 45, 42, 39, 36, 19]
[3, 6, 9, 12, 15, 18, 21, 60, 57, 54, 51, 48, 45, 42, 22]
...
Example. Suppose n = 2. We find:
triple count pair-sums 0  1  2  3  4
                       -------------
002      3     0,2     3     3
012      6     1,2,3      6  6  6
112      3     2,3           3  3
022      3     2,4           3     3
122      3     3,4              3  3
222      1     4                   1
                       -------------
Totals:                3  6 15 12  7, which is row 2 of the triangle.
		

Crossrefs

Partial sums of the rows gives A245556.
Row sums are A082040.

Programs

Formula

T(n,k) = 3k (0 <= k <= n-1), T(n,k) = 12n-3k-3 (n <= k <= 2n-1), T(n,2n) = 3n+1.

A303740 Primes of the form 9*k^2 + 3*k + 1.

Original entry on oeis.org

13, 43, 157, 241, 463, 601, 757, 1123, 2971, 3307, 4423, 4831, 5701, 6163, 8191, 9901, 11131, 12433, 13807, 19183, 20023, 21757, 22651, 23563, 26407, 28393, 35911, 37057, 53593, 60763, 78121, 83233, 95791, 113233, 117307, 121453, 123553, 127807, 136531, 143263
Offset: 1

Views

Author

Muniru A Asiru, Jun 01 2018

Keywords

Crossrefs

Cf. A303739.
Subsequence of A082040.

Programs

  • GAP
    Filtered(List([0..300],n->9*n^2+3*n+1),IsPrime);
    
  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 9*n^2 +3*n+1 ];// Vincenzo Librandi, Jun 25 2018
  • Maple
    select(isprime,[seq(9*n^2+3*n+1,n=0..500)]);
  • Mathematica
    Select[Table[9 n^2 + 3 n + 1, {n, 0, 150}], PrimeQ] (* Vincenzo Librandi, Jun 25 2018 *)

Formula

a(n) = A082040(A303739(n)). - Elmo R. Oliveira, May 04 2025

A082041 a(n) = 16*n^2 + 4*n + 1.

Original entry on oeis.org

1, 21, 73, 157, 273, 421, 601, 813, 1057, 1333, 1641, 1981, 2353, 2757, 3193, 3661, 4161, 4693, 5257, 5853, 6481, 7141, 7833, 8557, 9313, 10101, 10921, 11773, 12657, 13573, 14521, 15501, 16513, 17557, 18633, 19741, 20881, 22053, 23257, 24493
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Also sequence found by reading the segment (1,21) together with the line from 21, in the direction 21, 73, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Column k=4 of A082039.

Programs

  • Mathematica
    Table[16n^2+4n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,21,73},50] (* Harvey P. Dale, Sep 28 2024 *)
  • PARI
    a(n)=16*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (-1-18*x-13*x^2)/(x-1)^3 . - R. J. Mathar, Dec 03 2014
From Elmo R. Oliveira, Oct 28 2024: (Start)
E.g.f.: exp(x)*(1 + 20*x + 16*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Showing 1-10 of 10 results.