cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A152751 3 times octagonal numbers: a(n) = 3*n*(3*n-2).

Original entry on oeis.org

0, 3, 24, 63, 120, 195, 288, 399, 528, 675, 840, 1023, 1224, 1443, 1680, 1935, 2208, 2499, 2808, 3135, 3480, 3843, 4224, 4623, 5040, 5475, 5928, 6399, 6888, 7395, 7920, 8463, 9024, 9603, 10200, 10815, 11448, 12099, 12768, 13455, 14160, 14883, 15624, 16383, 17160
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

a(n) also can be represented as n concentric triangles (see example). - Omar E. Pol, Aug 21 2011

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric triangles:
.
.                                          o
.                                         o o
.                                        o   o
.                                       o     o
.                 o                    o   o   o
.                o o                  o   o o   o
.               o   o                o   o   o   o
.              o     o              o   o     o   o
.    o        o   o   o            o   o   o   o   o
.   o o      o   o o   o          o   o   o o   o   o
.           o           o        o   o           o   o
.          o o o o o o o o      o   o o o o o o o o   o
.                              o                       o
.                             o o o o o o o o o o o o o o
.
.    3            24                       63
(End)
		

Crossrefs

Cf. A033581, A085250, A152734, A194273. - Omar E. Pol, Aug 21 2011
Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=18: see Comments lines of A226492.

Programs

Formula

a(n) = 9*n^2 - 6*n = 3*A000567(n) = A064201(n)/3.
a(n) = a(n-1) + 18*n - 15 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+5*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From Elmo R. Oliveira, Dec 25 2024: (Start)
E.g.f.: 3*exp(x)*x*(1 + 3*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3.
a(n) = n + A152995(n). (End)

A033580 Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).

Original entry on oeis.org

0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 8,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A139267 in the same spiral - Omar E. Pol, Sep 09 2011
a(n) is the number of edges of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch May 13 2018
The partial sums of this sequence give A035006. - Leo Tavares, Oct 03 2021

Crossrefs

Programs

Formula

a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = A003154(n+1) - A016813(n). See Crossed Stars illustration.
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
a(n) = A046092(n-1) + A033996(n). See Triangulated Star Crosses illustration.
a(n) = 4*A000217(n-1) + 8*A000217(n).
a(n) = 4*A000217(n-1) + 4*A002378. See Oblong Star Crosses illustration.
a(n) = A016754(n) + 4*A000217(n). See Crossed Diamond Stars illustration.
a(n) = 2*A001105(n) + 4*A000217(n).
a(n) = A016742(n) + A046092(n).
a(n) = 4*A000290(n) + 4*A000217(n). (End)

A153794 4 times octagonal numbers: a(n) = 4*n*(3*n-2).

Original entry on oeis.org

0, 4, 32, 84, 160, 260, 384, 532, 704, 900, 1120, 1364, 1632, 1924, 2240, 2580, 2944, 3332, 3744, 4180, 4640, 5124, 5632, 6164, 6720, 7300, 7904, 8532, 9184, 9860, 10560, 11284, 12032, 12804, 13600, 14420, 15264, 16132, 17024
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Comments

Sequence found by reading the segment (0, 4) together with the line from 4, in the direction 4, 32, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 8*n = 4*A000567(n) = 2*A139267(n).
a(n) = 24*n + a(n-1) - 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=4, a(2)=32, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 14 2011
G.f.: 4*(x + 5*x^2)/(1-x)^3. - Harvey P. Dale, Jul 14 2011
E.g.f.: 4*x*(1 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016

A153796 6 times octagonal numbers: a(n) = 6*n*(3*n-2).

Original entry on oeis.org

0, 6, 48, 126, 240, 390, 576, 798, 1056, 1350, 1680, 2046, 2448, 2886, 3360, 3870, 4416, 4998, 5616, 6270, 6960, 7686, 8448, 9246, 10080, 10950, 11856, 12798, 13776, 14790, 15840, 16926, 18048, 19206, 20400, 21630, 22896, 24198, 25536, 26910, 28320, 29766
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 12*n = 6*A000567(n) = 3*A139267(n) = 2*A152751(n).
a(n) = a(n-1) + 36*n - 30 (with a(0)=0). - Vincenzo Librandi, Dec 15 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: 6*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 6*x*(1 + 3*x)*exp(x). (End)

A153808 8 times octagonal numbers: 8*n*(3*n-2).

Original entry on oeis.org

0, 8, 64, 168, 320, 520, 768, 1064, 1408, 1800, 2240, 2728, 3264, 3848, 4480, 5160, 5888, 6664, 7488, 8360, 9280, 10248, 11264, 12328, 13440, 14600, 15808, 17064, 18368, 19720, 21120, 22568, 24064, 25608, 27200, 28840, 30528, 32264
Offset: 0

Views

Author

Omar E. Pol, Jan 19 2009

Keywords

Crossrefs

Cf. A000567 (octagonal numbers), A064201 (9 times octagonal numbers), A139267 (twice octagonal numbers), A152751 (3 times octagonal numbers), A153794 (4 times octagonal numbers).

Programs

  • Magma
    [ 8*n*(3*n-2): n in [0..40] ];
    
  • Mathematica
    Table[8*n*(3*n-2), {n,0,25}] (* or *) LinearRecurrence[{3,-3,1},{0,8,64}, 25] (* G. C. Greubel, Aug 29 2016 *)
    8*PolygonalNumber[8,Range[0,40]] (* Harvey P. Dale, Nov 22 2023 *)
  • PARI
    a(n)=24*n^2-16*n \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 24*n^2 - 16*n = 8*A000567(n) = 4*A139267(n) = 2*A153794(n).
a(n) = a(n-1) + 48*n - 40 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 8*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 8*x*(1 + 3*x)*exp(x). (End)

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A239325 a(n) = 6*n^2 + 8*n + 1.

Original entry on oeis.org

1, 15, 41, 79, 129, 191, 265, 351, 449, 559, 681, 815, 961, 1119, 1289, 1471, 1665, 1871, 2089, 2319, 2561, 2815, 3081, 3359, 3649, 3951, 4265, 4591, 4929, 5279, 5641, 6015, 6401, 6799, 7209, 7631, 8065, 8511, 8969, 9439, 9921, 10415, 10921, 11439, 11969
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2014

Keywords

Comments

Binomial transform of 1, 14, 12, 0, 0, 0 (0 continued).
Sum_{n>=0} 1/a(n) = (Psi(0,(4+sqrt(10))/6) - Psi(0,(4-sqrt(10))/6))/(2*sqrt(10)) = 1.14373625509612753878..., where Psi(n,k) is the n^th derivative of the digamma function. - Bruno Berselli, Mar 16 2014

Examples

			a(0) = 1*1 = 1;
a(1) = 1*1 + 14*1 = 15;
a(2) = 1*1 + 14*2 + 12*1 = 41;
a(3) = 1*1 + 14*3 + 12*3 = 79;
a(4) = 1*1 + 14*4 + 12*6 = 129; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[6 n^2 + 8 n + 1, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 + 12 x - x^2)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)
    LinearRecurrence[{3,-3,1},{1,15,41},50] (* Harvey P. Dale, May 11 2019 *)
  • PARI
    a(n)=6*n^2+8*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (1 + 12*x - x^2)/(1-x)^3.
a(0) = 1, a(1) = 15, a(2) = 41; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = C(n,0) + 14*C(n,1) + 12*C(n,2).
a(n) = (A069133(n+1) + A100536(n+1) - A000290(n))/2.
a(n) = A139267(n+1) - 1. - Yuriy Sibirmovsky, Oct 04 2016

A290166 Number of complete non-collateral matches with lattice points on the edges of an n X n square.

Original entry on oeis.org

1, 13, 684, 73980, 13376448, 3627115200, 1376014521600, 695592156268800, 451867517982720000, 366777996951376281600, 363753784968105369600000, 432795572570448228556800000, 608442975450529801872998400000, 997771862620790990336507904000000
Offset: 1

Views

Author

César Eliud Lozada, Jul 22 2017

Keywords

Comments

It appears that an n X n square here refers to a square array of points with n+1 points along each side, so that there are n edges on each side. - N. J. A. Sloane, Aug 22 2017

Examples

			Points on the sides of a 2 X 2 square can be matched in 13 different ways, if matching two points on the same side is not allowed. Therefore a(2)=13.
		

Crossrefs

Cf. A139267 (number of distinct matches), A290167.

Programs

  • PARI
    \\ s is without corners and left:m-a, right:m-b, top:m-c, bottom:m-d.
    s(m,a,b,c,d) = {sum(k=0, m, my(j = k+(a+b-c-d)/2); if(j<0||k<0||2*(m-k)Andrew Howroyd, Sep 05 2017

Extensions

a(5)-a(14) from Andrew Howroyd, Sep 05 2017
Showing 1-10 of 11 results. Next