cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A342696 a(n) = floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8
Offset: 0

Views

Author

Wesley Ivan Hurt, May 18 2021

Keywords

Comments

Agrees with A064459 for n < 144, but a(144) = 12 whereas A064459(144) = 13.

Crossrefs

Cf. A064459, A221912 (partial sums), A344420 (floor n/11).

Programs

  • Mathematica
    Floor[Range[0, 200]/12]

Formula

G.f.: x^12 / ( (1+x)*(1+x^2)*(x^4-x^2+1)*(x^2-x+1)*(1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 08 2021
a(n) = a(n-1) + a(n-12) - a(n-13). - Wesley Ivan Hurt, Oct 29 2022

A269445 a(n) = Sum_{k=0..n} floor(k/13).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

Partial sums of A090620.
More generally, the ordinary generating function for the Sum_{k=0..n} floor(k/m) is x^m/((1 - x^m)*(1 - x)^2).

Crossrefs

Cf. A090620.
Cf. similar sequences of Sum_{k=0..n} floor(k/m): A002620 (m=2), A130518 (m=3), A130519 (m=4), A130520 (m=5), A174709 (m=6), A174738 (m=7), A118729 (m=8), A218470 (m=9), A131242 (m=10), A218530 (m=11), A221912 (m=12), this sequence (m=13).

Programs

  • Mathematica
    Table[Sum[Floor[k/13], {k, 0, n}], {n, 0, 73}]
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 74]

Formula

G.f.: x^13/((1 - x^13)*(1 - x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-13) - 2*a(n-14) + a(n-15).
Showing 1-3 of 3 results.