A153795 5 times octagonal numbers: a(n) = 5*n*(3*n-2).
0, 5, 40, 105, 200, 325, 480, 665, 880, 1125, 1400, 1705, 2040, 2405, 2800, 3225, 3680, 4165, 4680, 5225, 5800, 6405, 7040, 7705, 8400, 9125, 9880, 10665, 11480, 12325, 13200, 14105, 15040, 16005, 17000, 18025, 19080, 20165, 21280
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[5 * n * (3 * n - 2) , {n, 0, 25}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 40}, 25] (* G. C. Greubel, Aug 28 2016 *)
-
PARI
a(n)=5*n*(3*n-2) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 15*n^2 - 10*n = A000567(n)*5.
a(n) = 30*n + a(n-1) - 25 for n > 0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 5*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 5*x*(1 + 3*x)*exp(x). (End)
Comments