cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A153795 5 times octagonal numbers: a(n) = 5*n*(3*n-2).

Original entry on oeis.org

0, 5, 40, 105, 200, 325, 480, 665, 880, 1125, 1400, 1705, 2040, 2405, 2800, 3225, 3680, 4165, 4680, 5225, 5800, 6405, 7040, 7705, 8400, 9125, 9880, 10665, 11480, 12325, 13200, 14105, 15040, 16005, 17000, 18025, 19080, 20165, 21280
Offset: 0

Views

Author

Omar E. Pol, Jan 20 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5 * n * (3 * n - 2) , {n, 0, 25}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 40}, 25] (* G. C. Greubel, Aug 28 2016 *)
  • PARI
    a(n)=5*n*(3*n-2) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 15*n^2 - 10*n = A000567(n)*5.
a(n) = 30*n + a(n-1) - 25 for n > 0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 5*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 5*x*(1 + 3*x)*exp(x). (End)

A153797 7 times octagonal numbers: a(n) = 7*n*(3*n-2).

Original entry on oeis.org

0, 7, 56, 147, 280, 455, 672, 931, 1232, 1575, 1960, 2387, 2856, 3367, 3920, 4515, 5152, 5831, 6552, 7315, 8120, 8967, 9856, 10787, 11760, 12775, 13832, 14931, 16072, 17255, 18480, 19747, 21056, 22407, 23800, 25235, 26712, 28231
Offset: 0

Views

Author

Omar E. Pol, Jan 20 2009

Keywords

Crossrefs

Cf. A000567 (octagonal numbers), A153796, A153808.

Programs

Formula

a(n) = 21*n^2 - 14*n = 7*A000567(n).
a(n) = a(n-1) + 42*n - 35 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 7*x*(1 + 5*x)/(1 - x)^3.
E.g.f.: 7*x*(1 + 3*x)*exp(x). (End)

A214581 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the circumcoronene H(n) (n=1,2,3,4,5; see definition in the Klavzar papers).

Original entry on oeis.org

6, 6, 3, 30, 48, 57, 54, 45, 30, 12, 72, 126, 165, 186, 195, 186, 168, 138, 102, 66, 27, 132, 240, 327, 390, 435, 456, 462, 444, 414, 366, 309, 246, 177, 114, 48, 210, 390, 543, 666, 765, 834, 882, 900, 900, 870, 825, 756, 675, 582, 480, 378, 270, 174, 75
Offset: 1

Views

Author

Emeric Deutsch, Aug 31 2012

Keywords

Comments

The entries in row n are the coefficients of the Wiener polynomial of the corresponding graph.
Row n contains 4n-1 entries.
T(n,1) = 9n^2-3n = A152743(n).
T(n,2) = 6n(3n-2)= A153796(n).
T(n,3) = 3(9n^2-9n+1)= 3*A069131(n) (for n>5 this is a conjecture).
T(n,2n) = n(7n^2-1) = 6*A004126(n) (for n>5 this is a conjecture).
T(n,4n-2) = 6(n^2+n-1) = 6*A028387(n-1) (for n>5 this is a conjecture).
T(n,4n-1) = 3n^2 = A033428(n) (for n>5 this is a conjecture).
Sum(k*T(n,k), k>=1) = A143366(n).

Crossrefs

Formula

The entries have been obtained by using the Maple Graph Theory package for finding the distance matrix of each of the five graphs H(n) (n=1,2,3,4,5). The given Maple program yields the Wiener polynomial of H(2) (having as coefficients the entries in row 2).
Showing 1-3 of 3 results.