cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254990 4-bonacci word. Fixed point of morphism 0->01, 1->02, 2->03, 3->0.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3
Offset: 0

Views

Author

Ondrej Turek, Feb 11 2015

Keywords

Comments

Special case of k-bonacci word for k = 4 (see crossrefs).
The lengths of iterations S(i) are Tetranacci numbers (A000078).
Set S(0) = 0; S(1) = 0,1; S(2) = 0,1,0,2; S(3) = 0,1,0,2,0,1,0,3; for n >= 4: S(n) = S(n-1) S(n-2) S(n-3) S(n-4). The sequence is the limit S(infinity).

Examples

			The iterates are:
0
01
0102
01020103
010201030102010
01020103010201001020103010201
01020103010201001020103010201010201030102010010201030102
...
		

Crossrefs

Cf. A000078 (lengths of iterations).
Cf. A003849 (k=2, Fibonacci word), A080843 (k=3, Tribonacci word).

Programs

  • Mathematica
    Nest[Flatten[#/.{0->{0,1},1->{0,2},2->{0,3},3->0}]&,0,7] (* Harvey P. Dale, Mar 26 2015 *)