A255138 a(n) = (1 + 2^n*(3 + 2*(-1)^n))/3.
2, 1, 7, 3, 27, 11, 107, 43, 427, 171, 1707, 683, 6827, 2731, 27307, 10923, 109227, 43691, 436907, 174763, 1747627, 699051, 6990507, 2796203, 27962027, 11184811, 111848107, 44739243, 447392427, 178956971
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4).
Programs
-
Magma
[(1 + 2^n*(3 + 2*(-1)^n))/3: n in [0..50]]; // Wesley Ivan Hurt, Nov 05 2015
-
Maple
A255138:=n->(1 + 2^n*(3 + 2*(-1)^n))/3: seq(A255138(n), n=0..50); # Wesley Ivan Hurt, Nov 05 2015
-
Mathematica
a[n_] := (1 + 2^n*(3 + 2*(-1)^n))/3; Table[a[n], {n, 0, 29}] LinearRecurrence[{1,4,-4},{2,1,7},30] (* Harvey P. Dale, Aug 03 2024 *)
-
PARI
vector(30, n, n--; (1 + 2^n*(3 + 2*(-1)^n))/3) \\ Altug Alkan, Nov 05 2015
Formula
G.f.: (2-x-2*x^2)/((x-1)*(2*x-1)*(2*x+1)). - R. J. Mathar, Jul 25 2015
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 05 2015
a(n) = 4*a(n-2) - 1. - Bob Selcoe, Feb 09 2017
a(n) = 2^(n+1) - A096773(n+1). - Ruud H.G. van Tol, Sep 04 2023
Comments