A255178 Second differences of eighth powers (A001016).
1, 254, 6050, 52670, 266114, 963902, 2796194, 6927230, 15257090, 30683774, 57405602, 101263934, 170126210, 274309310, 427043234, 644975102, 948713474, 1363412990, 1919399330, 2652834494, 3606422402, 4830154814, 6382097570, 8329217150, 10748247554
Offset: 0
Examples
Second differences: 1, 254, 6050, 52670, 266114, ... (this sequence) First differences: 1, 255, 6305, 58975, 325089, ... (A022524) ---------------------------------------------------------------------- The eighth powers: 1, 256, 6561, 65536, 390625, ... (A001016) ---------------------------------------------------------------------- First partial sums: 1, 257, 6818, 72354, 462979, ... (A000542) Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636) Third partial sums: 1, 259, 7335, 86765, 629174, ... (A254642) Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (A254647)
Links
- Luciano Ancora, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Sums of powers of positive integers and their recurrence relations, section 0.5.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[n eq 0 select 1 else 2*(28*n^6+70*n^4+28*n^2+1): n in [0..30]]; // Vincenzo Librandi, Mar 12 2015
-
Mathematica
Join[{1}, Table[2 (28 n^6 + 70 n^4 + 28 n^2 + 1), {n, 1, 30}]] Join[{1},Differences[Range[0,30]^8,2]] (* Harvey P. Dale, Aug 26 2024 *)
Formula
G.f.: (1 + x)*(1 + 246*x + 4047*x^2 + 11572*x^3 + 4047*x^4 + 246*x^5 + x^6)/(1 - x)^7.
a(n) = 2*(28*n^6 + 70*n^4 + 28*n^2 + 1) for n>0, a(0)=1.
Extensions
Edited by Bruno Berselli, Mar 19 2015