cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255178 Second differences of eighth powers (A001016).

Original entry on oeis.org

1, 254, 6050, 52670, 266114, 963902, 2796194, 6927230, 15257090, 30683774, 57405602, 101263934, 170126210, 274309310, 427043234, 644975102, 948713474, 1363412990, 1919399330, 2652834494, 3606422402, 4830154814, 6382097570, 8329217150, 10748247554
Offset: 0

Views

Author

Luciano Ancora, Feb 21 2015

Keywords

Examples

			Second differences:  1, 254, 6050, 52670, 266114, ... (this sequence)
First differences:   1, 255, 6305, 58975, 325089, ... (A022524)
----------------------------------------------------------------------
The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)
----------------------------------------------------------------------
First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (A254647)
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 2*(28*n^6+70*n^4+28*n^2+1): n in [0..30]]; // Vincenzo Librandi, Mar 12 2015
  • Mathematica
    Join[{1}, Table[2 (28 n^6 + 70 n^4 + 28 n^2 + 1), {n, 1, 30}]]
    Join[{1},Differences[Range[0,30]^8,2]] (* Harvey P. Dale, Aug 26 2024 *)

Formula

G.f.: (1 + x)*(1 + 246*x + 4047*x^2 + 11572*x^3 + 4047*x^4 + 246*x^5 + x^6)/(1 - x)^7.
a(n) = 2*(28*n^6 + 70*n^4 + 28*n^2 + 1) for n>0, a(0)=1.

Extensions

Edited by Bruno Berselli, Mar 19 2015