cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255229 Integers n such that n^2 - 1 is the difference of the squares of twin primes.

Original entry on oeis.org

5, 7, 11, 13, 17, 31, 41, 43, 49, 77, 83, 101, 109, 119, 133, 179, 203, 263, 277, 283, 307, 311, 329, 353, 377, 407, 413, 419, 431, 437, 463, 473, 493, 577, 581, 619, 629, 703, 757, 791, 811, 907, 911, 913, 991, 1001, 1037, 1061, 1103, 1121, 1249, 1289, 1337, 1373, 1441, 1457, 1487, 1523, 1597, 1651, 1781
Offset: 1

Views

Author

Neri Gionata, Feb 18 2015

Keywords

Examples

			31^2 - 1 = 241^2 - 239^2, and (239, 241) is a twin prime pair, so 31 is in the sequence.
		

Crossrefs

Cf. A088486 (corresponding lesser twin primes), A111046.

Programs

  • Mathematica
    lst={};f[n_]:=Sqrt[Prime[n]^2-NextPrime[Prime[n],-1]^2+1];
    Do[If[Prime[n]-NextPrime[Prime[n],-1]==2&&IntegerQ[f[n]],AppendTo[lst,f[n]]],{n,3,10^5}];lst (* Ivan N. Ianakiev, Mar 30 2015 *)
  • PARI
    lista(nn) = {forprime(p=3, nn, q = precprime(p-1); if (((p-q) == 2) && issquare(d=p^2-q^2+1), print1(sqrtint(d), ", ")); ); } \\ Michel Marcus, Feb 18 2015