cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255386 Number of binary words of length n with exactly one occurrence of subword 010 and exactly one occurrence of subword 101.

Original entry on oeis.org

0, 0, 0, 0, 2, 4, 10, 20, 42, 84, 166, 320, 608, 1140, 2116, 3892, 7102, 12868, 23170, 41488, 73918, 131104, 231578, 407520, 714672, 1249368, 2177736, 3785688, 6564362, 11355940, 19602154, 33767228, 58056786, 99638364, 170711134, 292011872, 498747632
Offset: 0

Views

Author

Alois P. Heinz, May 05 2015

Keywords

Examples

			a(4) = 2: 0101, 1010.
a(5) = 4: 00101, 01011, 10100, 11010.
a(6) = 10: 000101, 001011, 010110, 010111, 011010, 100101, 101000, 101001, 110100, 111010.
a(8) = 42: 00000101, 00001011, 00010110, 00010111, 00011010, 00101100, 00101110, 00101111, 00110100, 00111010, 01001101, 01011000, 01011001, 01011100, 01011110, 01011111, 01100101, 01101000, 01101001, 01110100, 01111010, 10000101, 10001011, 10010110, 10010111, 10011010, 10100000, 10100001, 10100011, 10100110, 10100111, 10110010, 11000101, 11001011, 11010000, 11010001, 11010011, 11100101, 11101000, 11101001, 11110100, 11111010.
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(-2*x^4*(x-1)^2/
            ((x^2-x+1)*(x^2+x-1)^3), x, n+1), x, n):
    seq(a(n), n=0..50);
  • Mathematica
    LinearRecurrence[{4,-4,-2,5,-2,-2,2,1},{0,0,0,0,2,4,10,20},40] (* Harvey P. Dale, Apr 09 2016 *)

Formula

G.f.: -2*x^4*(x-1)^2/((x^2-x+1)*(x^2+x-1)^3).