A255386 Number of binary words of length n with exactly one occurrence of subword 010 and exactly one occurrence of subword 101.
0, 0, 0, 0, 2, 4, 10, 20, 42, 84, 166, 320, 608, 1140, 2116, 3892, 7102, 12868, 23170, 41488, 73918, 131104, 231578, 407520, 714672, 1249368, 2177736, 3785688, 6564362, 11355940, 19602154, 33767228, 58056786, 99638364, 170711134, 292011872, 498747632
Offset: 0
Keywords
Examples
a(4) = 2: 0101, 1010. a(5) = 4: 00101, 01011, 10100, 11010. a(6) = 10: 000101, 001011, 010110, 010111, 011010, 100101, 101000, 101001, 110100, 111010. a(8) = 42: 00000101, 00001011, 00010110, 00010111, 00011010, 00101100, 00101110, 00101111, 00110100, 00111010, 01001101, 01011000, 01011001, 01011100, 01011110, 01011111, 01100101, 01101000, 01101001, 01110100, 01111010, 10000101, 10001011, 10010110, 10010111, 10011010, 10100000, 10100001, 10100011, 10100110, 10100111, 10110010, 11000101, 11001011, 11010000, 11010001, 11010011, 11100101, 11101000, 11101001, 11110100, 11111010.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,5,-2,-2,2,1).
Programs
-
Maple
a:= n-> coeff(series(-2*x^4*(x-1)^2/ ((x^2-x+1)*(x^2+x-1)^3), x, n+1), x, n): seq(a(n), n=0..50);
-
Mathematica
LinearRecurrence[{4,-4,-2,5,-2,-2,2,1},{0,0,0,0,2,4,10,20},40] (* Harvey P. Dale, Apr 09 2016 *)
Formula
G.f.: -2*x^4*(x-1)^2/((x^2-x+1)*(x^2+x-1)^3).