cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118430 Number of binary sequences of length n containing exactly one subsequence 010.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 22, 47, 98, 199, 396, 777, 1508, 2900, 5534, 10492, 19782, 37119, 69358, 129118, 239578, 443229, 817822, 1505389, 2764986, 5068435, 9273928, 16940488, 30897020, 56271128, 102347564, 185922589, 337353688, 611462514
Offset: 0

Views

Author

Emeric Deutsch, Apr 27 2006

Keywords

Comments

With only two 0's at the beginning, the convolution of A005314 with itself. Column 1 of A118429.

Examples

			a(4) = 4 because we have 0100, 0101, 0010 and 1010.
		

Crossrefs

Programs

  • Maple
    g:=z^3/(1-2*z+z^2-z^3)^2: gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=0..38);
  • Mathematica
    LinearRecurrence[{4, -6, 6, -5, 2, -1}, {0, 0, 0, 1, 4, 10}, 40] (* Jean-François Alcover, May 11 2019 *)

Formula

G.f.: z^3/(1-2*z+z^2-z^3)^2.

A164146 Number of binary strings of length n with equal numbers of 010 and 101 substrings.

Original entry on oeis.org

1, 2, 4, 6, 12, 20, 38, 66, 124, 224, 424, 788, 1502, 2838, 5438, 10386, 20004, 38508, 74516, 144264, 280216, 544736, 1061292, 2069596, 4042254, 7902294, 15466842, 30297422, 59404174, 116558270, 228876426, 449713994, 884199348, 1739434972, 3423770240, 6742430340
Offset: 0

Views

Author

R. H. Hardin, Aug 11 2009

Keywords

Examples

			a(5) = 20: 00000, 00001, 00011, 00101, 00110, 00111, 01011, 01100, 01110, 01111, 10000, 10001, 10011, 10100, 11000, 11001, 11010, 11100, 11110, 11111. - _Alois P. Heinz_, Apr 16 2015
		

Crossrefs

Column k=1 of A303696.
Column k=0 of A307796.

Programs

  • Mathematica
    CoefficientList[Series[-(4*x^4-2*x^3-2*x^2+x+Sqrt[(2*x-1)*(2*x^2-1)*(2*x^2-2*x+1)]) / ((x-1)*(2*x-1)*(2*x^2-1)),{x,0,33}],x] (* Stefano Spezia, Jul 31 2025 *)

Formula

G.f.: -(4*x^4-2*x^3-2*x^2+x+sqrt((2*x-1)*(2*x^2-1)*(2*x^2-2*x+1))) / ((x-1)*(2*x-1)*(2*x^2-1)). - Alois P. Heinz, Apr 16 2015

A260668 Number of binary words of length n such that for every prefix the number of occurrences of subword 101 is larger than or equal to the number of occurrences of subword 010.

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 45, 84, 158, 298, 566, 1079, 2066, 3966, 7635, 14730, 28484, 55188, 107130, 208294, 405594, 790812, 1543766, 3016923, 5901858, 11556244, 22647431, 44418613, 87182680, 171234318, 336532357, 661788956, 1302124526, 2563365624, 5048704640
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(5) = 2^5 - 8 = 24: 00000, 00001, 00011, 00110, 00111, 01100, 01101, 01110, 01111, 10000, 10001, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111. These 8 words are not counted: 00010, 00100, 00101, 01000, 01001, 01010, 01011, 10010.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, c) option remember; `if`(c<0, 0, `if`(n=0, 1,
          b(n-1, [2, 4, 6, 4, 6, 4, 6][t], c-`if`(t=5, 1, 0))+
          b(n-1, [3, 5, 7, 5, 7, 5, 7][t], c+`if`(t=6, 1, 0))))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..40);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [1, 2, 4, 7, 13, 24][n+1],
          ((680+1441*n-444*n^2+35*n^3)        *a(n-1)
           -(4*(-112+625*n-179*n^2+14*n^3))   *a(n-2)
           +(2*(1521-656*n+63*n^2))           *a(n-3)
           +(2*(-9442+5295*n-947*n^2+56*n^3)) *a(n-4)
           -(4*(-6721+3413*n-591*n^2+35*n^3)) *a(n-5)
           +(4*(2*n-11))*(7*n^2-79*n+254)     *a(n-6)
            )/((n+1)*(7*n^2-93*n+340)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, t_, c_] := b[n, t, c] = If[c < 0, 0, If[n == 0, 1,
       b[n - 1, {2, 4, 6, 4, 6, 4, 6}[[t]], c - If[t == 5, 1, 0]] +
       b[n - 1, {3, 5, 7, 5, 7, 5, 7}[[t]], c + If[t == 6, 1, 0]]]];
    a[n_] := b[n, 1, 0];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 16 2023, after Alois P. Heinz *)

A260697 Number of binary words w of length n with equal numbers of 010 and 101 subwords such that for every prefix of w the number of occurrences of subword 101 is larger than or equal to the number of occurrences of subword 010.

Original entry on oeis.org

1, 2, 4, 6, 11, 18, 32, 54, 95, 164, 291, 514, 923, 1656, 3000, 5442, 9942, 18216, 33564, 62040, 115167, 214404, 400497, 750070, 1408734, 2652088, 5004833, 9464616, 17935137, 34049044, 64754844, 123351410, 235335966, 449632300, 860241606, 1647932000
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2015

Keywords

Examples

			a(3) = 6: 000, 001, 011, 100, 110, 111.
a(4) = 11: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1010, 1100, 1110, 1111.
a(5) = 18: 00000, 00001, 00011, 00110, 00111, 01100, 01110, 01111, 10000, 10001, 10011, 10100, 11000, 11001, 11010, 11100, 11110, 11111.
a(10) = 291: 0000000000, 0000000001, 0000000011, ..., 0110101010, 1010101000, 1010101001, 1010101010, 1101010100, 1110101010, ..., 1111111100, 1111111110, 1111111111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, c) option remember;
         `if`(c<0, 0, `if`(n=0, `if`(c=0, 1, 0),
          b(n-1, [2, 4, 6, 4, 6, 4, 6][t], c-`if`(t=5, 1, 0))+
          b(n-1, [3, 5, 7, 5, 7, 5, 7][t], c+`if`(t=6, 1, 0))))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..40);
    # second Maple program:
    a:= proc(n) option remember;
         `if`(n<7, [1, 2, 4, 6, 11, 18, 32][n+1],
         ((n+3)*(307*n^2-2357*n+196)              *a(n-1)
          -(19280-3372*n-5181*n^2+719*n^3)        *a(n-2)
          +(2*(6582+268*n^3-2857*n^2+6959*n))     *a(n-3)
          +(2*(-3307*n^2+1151*n+384*n^3+9052))    *a(n-4)
          -(2*(1016*n^3-12133*n^2+38927*n-28304)) *a(n-5)
          +(4*(27387*n+431*n^3-38420-6108*n^2))   *a(n-6)
          -(4*(n-7))*(67*n-236)*(2*n-11)          *a(n-7)
          )/((2*(n+4))*(24*n^2-148*n-279)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, t_, c_] := b[n, t, c] =
         If[c < 0, 0, If[n == 0, If[c == 0, 1, 0],
         b[n - 1, {2, 4, 6, 4, 6, 4, 6}[[t]], c - If[t == 5, 1, 0]] +
         b[n - 1, {3, 5, 7, 5, 7, 5, 7}[[t]], c + If[t == 6, 1, 0]]]];
    a[n_] := b[n, 1, 0];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)

A260505 Number of binary words of length n with exactly one occurrence of subword 010 and exactly two occurrences of subword 101.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 7, 16, 38, 82, 175, 362, 736, 1468, 2885, 5596, 10736, 20398, 38423, 71818, 133307, 245890, 450970, 822788, 1493992, 2700800, 4862566, 8721608, 15588371, 27770338, 49320863, 87344004, 154263972, 271765362, 477622769, 837519742, 1465470968
Offset: 0

Views

Author

Alois P. Heinz, Nov 11 2015

Keywords

Examples

			a(5) = 1: 10101.
a(6) = 2: 101011, 110101.
a(7) = 7: 0101101, 0110101, 1010110, 1010111, 1011010, 1101011, 1110101.
a(8) = 16: 00101101, 00110101, 01011011, 01011101, 01101011, 01110101, 10101100, 10101110, 10101111, 10110100, 10111010, 11010110, 11010111, 11011010, 11101011, 11110101.
a(9) = 38: 000101101, 000110101, 001011011, ..., 111011010, 111101011, 111110101.
a(10) = 82: 0000101101, 0000110101, 0001011011, ..., 1111011010, 1111101011, 1111110101.
		

Crossrefs

Programs

  • Maple
    gf:= -x^5*(2*x^2-x+1)*(x-1)^3/((x^2-x+1)^2*(x^2+x-1)^4):
    a:= n-> coeff(series(gf,x,n+1),x,n):
    seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{6,-13,10,6,-18,11,6,-10,2,3,-2,-1},{0,0,0,0,0,1,2,7,16,38,82,175},40] (* Harvey P. Dale, Jun 26 2025 *)

Formula

G.f.: -x^5*(2*x^2-x+1)*(x-1)^3/((x^2-x+1)^2*(x^2+x-1)^4).
Showing 1-5 of 5 results.