A255483 Infinite square array read by antidiagonals downwards: T(0,m) = prime(m), m >= 1; for n >= 1, T(n,m) = T(n-1,m)*T(n-1,m+1)/gcd(T(n-1,m), T(n-1,m+1))^2, m >= 1.
2, 3, 6, 5, 15, 10, 7, 35, 21, 210, 11, 77, 55, 1155, 22, 13, 143, 91, 5005, 39, 858, 17, 221, 187, 17017, 85, 3315, 1870, 19, 323, 247, 46189, 133, 11305, 5187, 9699690, 23, 437, 391, 96577, 253, 33649, 21505, 111546435, 46
Offset: 0
Examples
The top left corner of the array, row index 0..5, column index 1..10: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 6, 15, 35, 77, 143, 221, 323, 437, 667, 899 10, 21, 55, 91, 187, 247, 391, 551, 713, 1073 210, 1155, 5005, 17017, 46189, 96577, 215441, 392863, 765049, 1363783 22, 39, 85, 133, 253, 377, 527, 703, 943, 1247 858, 3315, 11305, 33649, 95381, 198679, 370481, 662929, 1175921, 1816879
Links
- Alois P. Heinz, Antidiagonals n = 0..125, flattened
- C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
- C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, arXiv:1411.1334 [math.NT], 2014.
- Discussion of SeqFan-mailing list
- Index entries for sequences related to Gilbreath conjecture and transform
Crossrefs
A kind of generalization of A036262.
Programs
-
Maple
T:= proc(n, m) option remember; `if`(n=0, ithprime(m), T(n-1, m)*T(n-1, m+1)/igcd(T(n-1, m), T(n-1, m+1))^2) end: seq(seq(T(n, 1+d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 28 2015
-
Mathematica
T[n_, m_] := T[n, m] = If[n == 0, Prime[m], T[n-1, m]*T[n-1, m+1]/GCD[T[n-1, m], T[n-1, m+1]]^2]; Table[Table[T[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
-
PARI
T=matrix(N=15,N);for(j=1,N,T[1,j]=prime(j));(f(x,y)=x*y/gcd(x,y)^2);for(k=1,N-1,for(j=1,N-k,T[k+1,j]=f(T[k,j],T[k,j+1])));A255483=concat(vector(N,i,vector(i,j,T[j,1+i-j]))) \\ M. F. Hasler, Sep 17 2016
-
PARI
A255483(n,k)=prod(j=0,n,if(bitand(n-j,j),1,prime(j+k))) \\ M. F. Hasler, Sep 18 2016
-
Scheme
(define (A255483 n) (A255483bi (A002262 n) (+ 1 (A025581 n)))) ;; Then use either an almost standalone version (requiring only A000040): (define (A255483bi row col) (if (zero? row) (A000040 col) (let ((a (A255483bi (- row 1) col)) (b (A255483bi (- row 1) (+ col 1)))) (/ (lcm a b) (gcd a b))))) ;; Or one based on M. F. Hasler's new recurrence: (define (A255483bi row col) (if (= 1 col) (A123098 row) (A003961 (A255483bi row (- col 1))))) ;; Antti Karttunen, Sep 18 2016
Formula
T(n,1) = A123098(n), T(n,m+1) = A003961(T(n,m)), for all n >= 0, m >= 1. - M. F. Hasler, Sep 17 2016
T(n,m) = Prod_{k=0..n} prime(k+m)^(!(n-k & k)) where !x is 1 if x=0 and 0 else, and & is binary AND. - M. F. Hasler, Sep 18 2016
From Antti Karttunen, Sep 18 2016: (Start)
For n >= 1, m >= 1, T(n,m) = lcm(T(n-1,m),T(n-1,m+1)) / gcd(T(n-1,m),T(n-1,m+1)).
(End)
From Peter Munn, Jan 08 2020: (Start)
T(n,k) = A329329(T(n,1), T(0,k)).
(End)
Comments