cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A276804 Second column T[.,2] of array T = A255483: T[0,j] = prime(j), T[i+1,j] = T[i,j]*T[i,j+1]/gcd(T[i,j],T[i,j+1])^2, i >= 0, j >= 1.

Original entry on oeis.org

3, 15, 21, 1155, 39, 3315, 5187, 111546435, 87, 13485, 22533, 1575169365, 48633, 6022953885, 12684118629, 961380175077106319535, 183, 61305, 90951, 24466273755, 187941, 88836891585, 157950690807, 133754519645521334494935, 536007, 573342567585
Offset: 0

Views

Author

M. F. Hasler, Sep 17 2016

Keywords

Comments

By construction all terms are divisible by 3, and the n-th term a(n-1) is divisible by prime(n+1). We have a(n)/3 = (1, 5, 7, 385, 13, 1105, 1729, 37182145, 29, 4495, ...). Neither the sequence of primes appearing here, (5, 7, 13, 29, 61, ...), nor its complement in the primes, ([2, 3,] 11, 17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 67, ...), seem to be listed in the OEIS.
This is also the multiplicative encoding of Pascal's triangle in Z_2 (A047999), shifted by prefixing an initial 0 to the n-th row; e.g., n=2 => 1,0,1 => 0,1,0,1 => 2^0 * 3^1 * 5^0 * 7^1 = a(2).

Crossrefs

Cf. A255483 (the square array T), A123098 (first column of T), A003961.

Programs

  • PARI
    A276804(n)=prod(j=0, n, if(bitand(n-j, j), 1, prime(j+2)))

Formula

a(n) = A003961(A123098(n)).
a(n) = Prod_{j=0..n} prime(j+2)^(!(n-j & j)), where ! is "not" (=0 for nonzero and 1 for zero) and & is bitwise AND.
a(n) = A007913(A267096(n)) = A007913(A252738(n+2)). - Antti Karttunen, Sep 18 2016

A276578 Transpose of square array A255483.

Original entry on oeis.org

2, 6, 3, 10, 15, 5, 210, 21, 35, 7, 22, 1155, 55, 77, 11, 858, 39, 5005, 91, 143, 13, 1870, 3315, 85, 17017, 187, 221, 17, 9699690, 5187, 11305, 133, 46189, 247, 323, 19, 46, 111546435, 21505, 33649, 253, 96577, 391, 437, 23, 4002, 87, 1078282205, 50141, 95381, 377, 215441, 551, 667, 29, 7130, 13485, 155, 6685349671, 133331, 198679, 527, 392863, 713, 899, 31
Offset: 0

Views

Author

Antti Karttunen, Sep 18 2016

Keywords

Comments

See A255483.

Crossrefs

Transpose: A255483.
Cf. A276579.

Programs

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A036262 Array of numbers read by upward antidiagonals, arising from Gilbreath's conjecture: leading row lists the primes; the following rows give absolute values of differences of previous row.

Original entry on oeis.org

2, 1, 3, 1, 2, 5, 1, 0, 2, 7, 1, 2, 2, 4, 11, 1, 2, 0, 2, 2, 13, 1, 2, 0, 0, 2, 4, 17, 1, 2, 0, 0, 0, 2, 2, 19, 1, 2, 0, 0, 0, 0, 2, 4, 23, 1, 2, 0, 0, 0, 0, 0, 2, 6, 29, 1, 0, 2, 2, 2, 2, 2, 2, 4, 2, 31, 1, 0, 0, 2, 0, 2, 0, 2, 0, 4, 6, 37, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 2, 4, 41, 1, 0, 0, 0, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

The conjecture is that the leading term is always 1.
Odlyzko has checked it for primes up to pi(10^13) = 3*10^11.
From M. F. Hasler, Jun 02 2012: (Start)
The second column, omitting the initial 3, is given in A089582. The number of "0"s preceding the first term > 1 in the n-th row is given in A213014. The first term > 1 in any row must equal 2, else the conjecture is violated: Obviously all terms except for the first one are even. Thus, if the 2nd term in some row is > 2, it is >= 4, and the first term of the subsequent row is >= 3. If there is a positive number of zeros preceding a first term > 2 (thus >= 4), this "jump" will remain constant and "propagate" (in subsequent rows) to the beginning of the row, and the previously discussed case applies.
The previous statement can also be formulated as: Gilbreath's conjecture is equivalent to: A036277(n) > A213014(n)+2 for all n.
CAVEAT: While table A036261 starts with the first absolute differences of the primes in its first row, the present sequence has the primes themselves in its uppermost row, which is sometimes referred to as "row 0". Thus, "first row" of this table A036262 may either refer to row 1 (1,2,2,...), or to row 0 (2,3,5,7,...), while the latter might, however, as well be referred to "row 1 of A036262" in other sequences or papers.
(End)
From Clark Kimberling, Nov 27 2022: (Start)
Suppose that S = (s(k)), for k >= 1, is a sequence of real numbers. For n >= 1, let g(1,n) = |s(n+1)-s(n)| and g(k,n) = |g(k-1,n+1) - g(k-1,n)| for k >= 2.
Call (g(k,n)) the Gilbreath array of S. Call the first column of this array the Gilbreath transform of S. Denote this transform by G(S), so that G(S) is the sequence (g(n,1)). If S is the sequence of primes, then the Gilbreath conjecture holds that G(S) consists exclusively of 1's. More generally, it appears that there are many S such that G(S) is eventually periodic. See A358691 for conjectured examples. (End)

Examples

			The array begins (conjecture is leading term is always 1):
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101
1 2 2 4  2  4  2  4  6  2  6  4  2  4  6  6  2  6  4  2  6  4  6  8  4   2
1 0 2 2  2  2  2  2  4  4  2  2  2  2  0  4  4  2  2  4  2  2  2  4  2   2
1 2 0 0  0  0  0  2  0  2  0  0  0  2  4  0  2  0  2  2  0  0  2  2  0   0
1 2 0 0  0  0  2  2  2  2  0  0  2  2  4  2  2  2  0  2  0  2  0  2  0   0
1 2 0 0  0  2  0  0  0  2  0  2  0  2  2  0  0  2  2  2  2  2  2  2  0   8
1 2 0 0  2  2  0  0  2  2  2  2  2  0  2  0  2  0  0  0  0  0  0  2  8   8
1 2 0 2  0  2  0  2  0  0  0  0  2  2  2  2  2  0  0  0  0  0  2  6  0   8
1 2 2 2  2  2  2  2  0  0  0  2  0  0  0  0  2  0  0  0  0  2  4  6  8   6
1 0 0 0  0  0  0  2  0  0  2  2  0  0  0  2  2  0  0  0  2  2  2  2  2   4
...
		

References

  • R. K. Guy, Unsolved Problems Number Theory, A10.
  • H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 192.
  • W. Sierpiński, L'induction incomplète dans la théorie des nombres, Scripta Math. 28 (1967), 5-13.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 410.

Crossrefs

See A255483 for an interesting generalization.

Programs

  • Haskell
    a036262 n k = delta !! (n - k) !! (k - 1) where delta = iterate
       (\pds -> zipWith (\x y -> abs (x - y)) (tail pds) pds) a000040_list
    -- Reinhard Zumkeller, Jan 23 2011
  • Maple
    A036262 := proc(n, k)
        option remember ;
        if n = 0 then
            ithprime(k) ;
        else
            abs(procname(n-1, k+1)-procname(n-1, k)) ;
        end if;
    end proc:
    seq(seq( A036262(d-k,k),k=1..d),d=1..13) ; # R. J. Mathar, May 10 2023
  • Mathematica
    max = 14; triangle = NestList[ Abs[ Differences[#]] &, Prime[ Range[max]], max]; Flatten[ Table[ triangle[[n - k + 1, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Nov 04 2011 *)

Formula

T(0,k) = A000040(k). T(n,k) = |T(n-1,k+1) - T(n-1,k)|, n > 0. - R. J. Mathar, Sep 19 2013

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
Definition edited by N. J. A. Sloane, May 03 2023

A099884 XOR difference triangle of the powers of 2, read by rows; Square array A(row,col): A(0,col) = 2^col, A(row,col) = A048724(A(row-1, col)) for row > 0, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 15, 16, 24, 20, 30, 17, 32, 48, 40, 60, 34, 51, 64, 96, 80, 120, 68, 102, 85, 128, 192, 160, 240, 136, 204, 170, 255, 256, 384, 320, 480, 272, 408, 340, 510, 257, 512, 768, 640, 960, 544, 816, 680, 1020, 514, 771, 1024, 1536, 1280, 1920
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2004

Keywords

Comments

Define an "XOR difference triangle" for a sequence A by the following process. Start with A in the leftmost column. Generate the next column by performing the XOR operation between adjacent terms of the prior column. Repeat this process to generate the XOR difference triangle for A. Further, we define the "XOR BINOMIAL transform" of A as the main diagonal in the XOR difference triangle for A. The XOR BINOMIAL transform is its self-inverse. Let a sequence B be the XOR BINOMIAL transform of A, then we may express B by: B(n) = SumXOR_{k=0..n} A047999(n,k)*A(k), which is equivalent to: B(n) = (C(n,0)mod 2)*A(0) XOR (C(n,1)mod 2)*A(1) XOR (C(n,2)mod 2)*A(2) XOR ... XOR (X(n,n)mod 2)*A(n), where the coefficients are C(n,k)(mod 2) = A047999(n,k).
This sequence is a rearrangement of the numbers which are 2^k times distinct Fermat numbers (numbers of the form 2^(2^m) + 1). This matches the sizes of polygons constructible with compass and straightedge (A003401) up to 2^32+1, which is the first nonprime Fermat number. - Franklin T. Adams-Watters, Jun 16 2006

Examples

			The main diagonal equals A001317 (Pascal's triangle mod 2 in decimal):
{1,3,5,15,17,51,85,255,257,771,1285,3855,...}, and defines the XOR BINOMIAL transform of the powers of 2.
Rows begin:
  1;
  2, 3;
  4, 6, 5;
  8, 12, 10, 15;
  16, 24, 20, 30, 17;
  32, 48, 40, 60, 34, 51;
  64, 96, 80, 120, 68, 102, 85;
  128, 192, 160, 240, 136, 204, 170, 255;
  256, 384, 320, 480, 272, 408, 340, 510, 257;
  512, 768, 640, 960, 544, 816, 680, 1020, 514, 771;
  1024, 1536, 1280, 1920, 1088, 1632, 1360, 2040, 1028, 1542, 1285;
  2048, 3072, 2560, 3840, 2176, 3264, 2720, 4080, 2056, 3084, 2570, 3855;
  ...
From _Antti Karttunen_, Sep 19 2016: (Start)
Viewed as a square array, the top left corner looks like this:
     1,    2,     4,     8,    16,     32,     64,    128
     3,    6,    12,    24,    48,     96,    192,    384
     5,   10,    20,    40,    80,    160,    320,    640
    15,   30,    60,   120,   240,    480,    960,   1920
    17,   34,    68,   136,   272,    544,   1088,   2176
    51,  102,   204,   408,   816,   1632,   3264,   6528
    85,  170,   340,   680,  1360,   2720,   5440,  10880
   255,  510,  1020,  2040,  4080,   8160,  16320,  32640
   257,  514,  1028,  2056,  4112,   8224,  16448,  32896
   771, 1542,  3084,  6168, 12336,  24672,  49344,  98688
  1285, 2570,  5140, 10280, 20560,  41120,  82240, 164480
  3855, 7710, 15420, 30840, 61680, 123360, 246720, 493440
  4369, 8738, 17476, 34952, 69904, 139808, 279616, 559232
  ...
(End)
The square array shown above can be viewed as a subtable of a multiplication table with particular relevance to the carryless multiplication defined by A048720, as the first column gives the A048720 powers of 3 (and the first row gives powers of 2, which are the same as in standard arithmetic). - _Peter Munn_, Jan 13 2020
		

Crossrefs

Essentially GF(2)[X] analog of table A036561. - Antti Karttunen, Jan 18 2020
Cf. A047999, A158875 (row sums).
Cf. A000079 (first column of triangular table, the topmost row of square array).
Cf. A001317 (the rightmost diagonal of triangular table, the leftmost column of square array).
Cf. A099885, A117998 (central diagonals).
Cf. A276618 (transpose), A091202, A193231.

Programs

  • Mathematica
    a[n_]:= Sum[Mod[Binomial[n, i], 2]*2^i, {i, 0, n}]; T[n_, k_]:=2^(n - k)a[k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    {T(n,k)=local(B);B=0;for(i=0,k,B=bitxor(B,binomial(k,i)%2*2^(n-i)));B}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Python
    from sympy import binomial
    def a(n):
        return sum((binomial(n, i)%2)*2**i for i in range(n + 1))
    def T(n, k): return 2**(n - k)*a(k)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A099884 n) (A099884bi (A002262 n) (A025581 n)))
    ;; Then use either this recurrence:
    (define (A099884bi row col) (if (zero? row) (A000079 col) (A048724 (A099884bi (- row 1) col))))
    ;; or this one:
    (define (A099884bi row col) (if (zero? col) (A001317 row) (* 2 (A099884bi row (- col 1)))))
    ;; Antti Karttunen, Sep 19 2016
    

Formula

T(n, k) = 2^(n-k)*A001317(k). T(n, n) = A001317(n) = SumXOR_{k=0..n} A047999(n, k)*2^k, where SumXOR is the analog of summation under the binary XOR operation.
From Antti Karttunen, Sep 19 2016: (Start)
When viewed as a square array A(row,col), with row >= 0, col >= 0, the following recurrences and formulas are valid:
A(0,col) = A000079(col), for row > 0, A(row,col) = A048724(A(row-1, col)).
A(row,0) = A001317(row), for col > 0, A(row,col) = 2*A(row,col-1).
A(row,col) = A248663(A066117(row+1,col+1)) = A048675(A255483(row,col+1)).
(End)
With the definitions from Antti Karttunen above, A(row+1, col) = A048720(3, A(row, col)). - Peter Munn, Jan 13 2020
A(n,k) = A193231(A(k,n)) = A091202(A036561(n,k)). - Antti Karttunen, Jan 18 2020

Extensions

Square array interpretation added as a second, alternative description by Antti Karttunen, Sep 19 2016

A277330 a(0)=1, a(1)=2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).

Original entry on oeis.org

1, 2, 3, 6, 5, 2, 15, 30, 7, 10, 3, 30, 35, 2, 105, 210, 11, 70, 21, 30, 5, 10, 105, 42, 77, 70, 3, 210, 385, 2, 1155, 2310, 13, 770, 231, 30, 55, 70, 105, 6, 7, 2, 21, 42, 385, 10, 165, 66, 143, 110, 231, 210, 5, 70, 1155, 66, 1001, 770, 3, 2310, 5005, 2, 15015, 30030, 17, 10010, 3003, 30, 715, 770, 105, 66, 91, 154, 231, 6, 385, 70, 15, 42, 11, 14, 3, 42, 55, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2016

Keywords

Comments

Each term is a squarefree number, A005117.

Crossrefs

Cf. A023758 (positions where coincides with A260443).
Cf. A277701, A277712, A277713 for the positions of 2's, 3's and 6's in this sequence, which are also the first three rows of array A277710.
Cf. also A255483.

Formula

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).
Other identities. For all n >= 0:
a(n) = A007913(A260443(n)).
a(n) = A019565(A264977(n)), A048675(a(n)) = A264977(n).
A055396(a(n)) = A277707(A260443(n)) = A001511(n).

A066117 Triangle read by rows: T(n,k) = T(n-1,k-1)*T(n,k-1) and T(n,1) = prime(n).

Original entry on oeis.org

2, 3, 6, 5, 15, 90, 7, 35, 525, 47250, 11, 77, 2695, 1414875, 66852843750, 13, 143, 11011, 29674645, 41985913344375, 2806877704512541816406250, 17, 221, 31603, 347980633, 10326201751150285, 433555011900329243987584396875
Offset: 1

Views

Author

Henry Bottomley, Dec 05 2001

Keywords

Comments

As a square array read by descending antidiagonals, A(n, k), n >= 1, k >= 1, gives the encoding defined in A297845 of the polynomial (x+1)^(n-1) * x^(k-1). - Peter Munn, Jul 27 2022

Examples

			T(4,3) = T(3,2)*T(4,2) = 15*35 = 525. Rows start
     2;
    3, 6;
  5, 15, 90;
7, 35, 525, 47250;
...
From _Antti Karttunen_, Sep 18 2016: (Start)
Alternatively, this table can be viewed as a square array. Then the top left 5x4 corner looks as:
    2,       3,        5,         7,         11
    6,      15,       35,        77,        143
   90,     525,     2695,     11011,      31603
47250, 1414875, 29674645, 347980633, 2255916949
(End)
		

Crossrefs

Cf. A000040, A006094 and A066116 (three leftmost diagonal of triangular table = three topmost rows of square array).
Cf. A007188, A267096 (two rightmost diagonals of the triangular table = two leftmost columns of square array).
Cf. also A099884, A255483, A276586, A276588 (other arrays derived from this one).

Programs

Formula

From Antti Karttunen, Sep 19 2016: (Start)
When computed as a square array A(row,col), row >= 1, col >= 1:
A(1,col) = A000040(col), for row > 1, A(row,col) = A(row-1,col)*A(row-1,col+1).
A(row,1) = A007188(row-1), for col > 1, A(row,col) = A003961(A(row,col-1)).
For all row >= 1, col >= 1, A055396(A(row,col)) = col.
(End)
A(1,1) = 2; for n > 1, A(n,k) = A297845(A(n-1,k),6); for k > 1, A(n,k) = A297845(A(n,k-1),3). - Peter Munn, Jul 20 2022

A123098 Multiplicative encoding of triangle formed by reading Pascal's triangle mod 2 (A047999).

Original entry on oeis.org

2, 6, 10, 210, 22, 858, 1870, 9699690, 46, 4002, 7130, 160660290, 20746, 1008940218, 2569288370, 32589158477190044730, 118, 21594, 39530, 3595293030, 94754, 17808161514, 44788794490, 7074421030108255253430, 263258, 141108130806, 281595235990, 296987147493893719182390, 944729501606
Offset: 0

Views

Author

Jonathan Vos Post, Nov 05 2006

Keywords

Comments

This is to A047999 "Triangle formed by reading Pascal's triangle mod 2" as A007188 "Multiplicative encoding of Pascal triangle: Product p(i+1)^C(n,i)" is to A007318 "Pascal's triangle read by rows." a(2^n - 1) = primorial(2^n) = A002110(A000079(n)). In row(n) the primes with exponent 1 form row(n) of a Sierpinski sieve, so this sequence is a kind of Gödelization of a Sierpinski sieve.
All terms are divisible by 2 and the n-th term, a(n-1), is also divisible by prime(n). This sequence appears as first column of the square array A255483; its second column A276804 is very similar, with all prime factors shifted to the net larger prime (cf. A003961). - M. F. Hasler, Sep 17 2016
a(n) is the n-th power of 6 in the ring defined in A329329. - Peter Munn, Jan 04 2020

Examples

			a(0) = 2^T(0,0) = 2^1 = 2.
a(1) = 2^T(1,0) * 3^T(1,1) = 2^1 * 3^1 = 6.
a(2) = 2^T(2,0) * 3^T(2,1) * 5^T(2,2) = 2^1 * 3^0 * 5^1 = 10.
a(3) = 2^T(3,0) * 3^T(3,1) * 5^T(3,2) * 7^T(3,3) = 2^1 * 3^1 * 5^1 * 7^1 = 210.
a(4) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 = 22.
a(5) = 2^1 * 3^1 * 5^0 * 7^0 * 11^1 * 13^1 = 858.
a(6) = 2^1 * 3^0 * 5^1 * 7^0 * 11^1 * 13^0 * 17^1 = 1870.
a(7) = 2^1 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1 = 9699690.
a(8) = 2^1 * 3^0 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 = 46.
a(9) = 2^1 * 3^1 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 = 4002.
a(10) = 2^1 * 3^0 * 5^1 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^1 = 7130.
a(11) = 2^1 * 3^1 * 5^1 * 7^1 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 * 31^1 * 37^1 = 160660290.
a(12) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^0 * 37^0 * 41^1 = 20746.
From _N. J. A. Sloane_, Feb 28 2015: (Start)
Factorizations of initial terms, from Cobeli-Zaharescu paper:
                     2 = 2
                     6 = 2*3
                    10 = 2*5
                   210 = 2*3*5*7
                    22 = 2*11
                   858 = 2*3*11*13
                  1870 = 2*5*11*17
               9699690 = 2*3*5*7*11*13*17*19
                    46 = 2*23
                  4002 = 2*3*23*29
                  7130 = 2*5*23*31
             160660290 = 2*3*5*7*23*29*31*37
                 20746 = 2*11*23*41
            1008940218 = 2*3*11*13*23*29*41*43
            2569288370 = 2*5*11*17*23*31*41*47
  32589158477190044730 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53
  ... (End)
From _Jon E. Schoenfield_, Jun 09 2019: (Start)
   n | Factorization of a(n)
  ---+-----------------------------------------------
   0 | 2
   1 | 2* 3
   2 | 2   * 5
   3 | 2* 3* 5* 7
   4 | 2         *11
   5 | 2* 3      *11*13
   6 | 2   * 5   *11   *17
   7 | 2* 3* 5* 7*11*13*17*19
   8 | 2                     *23
   9 | 2* 3                  *23*29
  10 | 2   * 5               *23   *31
  11 | 2* 3* 5* 7            *23*29*31*37
  12 | 2         *11         *23         *41
  13 | 2* 3      *11*13      *23*29      *41*43
  14 | 2   * 5   *11   *17   *23   *31   *41   *47
  15 | 2* 3* 5* 7*11*13*17*19*23*29*31*37*41*43*47*53
  ... (End)
		

Crossrefs

Programs

  • Maple
    f:=n->mul(ithprime(k+1)^(binomial(n,k) mod 2),k=0..n);
    [seq(f(n),n=0..40)];
  • Mathematica
    a[n_] := Product[Prime[k+1]^Mod[Binomial[n, k], 2], {k, 0, n}];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 01 2018, from Maple *)
  • PARI
    a(n) = prod (k=0, n, if (binomial(n,k)%2, prime(k+1), 1)) \\ Rémy Sigrist, Jun 09 2019
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A123098(n):
        return reduce(mul,(1 if ~(n-1) & k else prime(k+1) for k in range(n))) # Chai Wah Wu, Feb 08 2016
    
  • Scheme
    (define (A123098 n) (A019565 (A001317 n))) ;; Antti Karttunen, Sep 18 2016
    

Formula

a(n) = Product_{i=0..n} p(i+1)^(C(n,i) mod 2).
a(n) = Product_{i=0..n} p(i+1)^T(n,i), where T(n,i) are as in A047999 and where Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
From Antti Karttunen, Sep 18 2016: (Start)
a(n) = A007913(A007188(n)). [From the first comment.]
a(n) = A019565(A001317(n)).
(End)
a(0) = 2, and for n > 0, a(n) = A329329(a(n-1), 6). - Peter Munn, Jan 04 2020

Extensions

Further terms from N. J. A. Sloane, Feb 28 2015
Changed offset from 1 to 0, corresponding changes to formulas and examples from Antti Karttunen, Sep 18 2016

A276588 Square array A(row,col) = Sum_{k=0..row} binomial(row,k)*(1+col+k)!, read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Original entry on oeis.org

1, 2, 3, 6, 8, 11, 24, 30, 38, 49, 120, 144, 174, 212, 261, 720, 840, 984, 1158, 1370, 1631, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 362880, 403200, 448560, 499680, 557400, 622704, 696750, 780908, 876809, 3628800, 3991680, 4394880, 4843440, 5343120, 5900520, 6523224, 7219974, 8000882, 8877691
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2016

Keywords

Examples

			The top left corner of the array:
     1,     2,     6,     24,     120,      720,      5040,      40320
     3,     8,    30,    144,     840,     5760,     45360,     403200
    11,    38,   174,    984,    6600,    51120,    448560,    4394880
    49,   212,  1158,   7584,   57720,   499680,   4843440,   51932160
   261,  1370,  8742,  65304,  557400,  5343120,  56775600,  661933440
  1631, 10112, 74046, 622704, 5900520, 62118720, 718709040, 9059339520
		

Crossrefs

Transpose: A276589.
Topmost row (row 0): A000142, Row 1: A001048 (without its initial 2), Row 2: A001344 (from a(1) = 11 onward), Row 3: A001345 (from a(1) = 49 onward), Row 4: A001346 (from a(1) = 261 onward), Row 5: A001347 (from a(1) = 1631 onward).
Leftmost column (column 0): A001339, Column 1: A001340, Columns 2-3: A001341 & A001342 (apparently).
Cf. A276075.
Cf. also arrays A066117, A276586, A099884, A255483.

Programs

  • Mathematica
    T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[c, r - c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!);
    for(r=0, 10, for(c=0, r, print1(T(c, r - c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial, factorial
    def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)])
    for r in range(11): print([T(c, r - c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A276588 n) (A276588bi (A002262 n) (A025581 n)))
    (define (A276588bi row col) (A276075 (A066117bi (+ 1 row) (+ 1 col)))) ;; Code for A066117bi given in A066117, and for A276075 under the respective entry.
    

Formula

A(row,col) = Sum_{k=0..row} binomial(row,k)*A000142(1+col+k).
A(row,col) = A276075(A066117(row+1,col+1)).

A276586 Square array A(row,col) = Sum_{k=0..row} binomial(row,k)*A002110(col+k), read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Original entry on oeis.org

1, 2, 3, 6, 8, 11, 30, 36, 44, 55, 210, 240, 276, 320, 375, 2310, 2520, 2760, 3036, 3356, 3731, 30030, 32340, 34860, 37620, 40656, 44012, 47743, 510510, 540540, 572880, 607740, 645360, 686016, 730028, 777771, 9699690, 10210200, 10750740, 11323620, 11931360, 12576720, 13262736, 13992764, 14770535
Offset: 0

Views

Author

Antti Karttunen, Sep 18 2016

Keywords

Examples

			The top left corner of the array:
     1,     2,      6,       30,       210,       2310,        30030
     3,     8,     36,      240,      2520,      32340,       540540
    11,    44,    276,     2760,     34860,     572880,     10750740
    55,   320,   3036,    37620,    607740,   11323620,    253753500
   375,  3356,  40656,   645360,  11931360,  265077120,   7422334920
  3731, 44012, 686016, 12576720, 277008480, 7687412040, 235239464460
		

Crossrefs

Transpose: A276587.
Topmost row: A002110, Leftmost column: A136104.
Cf. also arrays A066117, A276588, A099884, A255483.

Programs

  • Mathematica
    primorial[n_] := Product[Prime[k], {k, 1, n}]; A[n_, k_] := Sum[Binomial[n, j]*primorial[k+j], {j, 0, n}]; Table[A[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 22 2017 *)
  • PARI
    P(n)=prod(i=1, n, prime(i));
    T(n, k) = sum(j=0, n, binomial(n, j)*P(k + j));
    for(n=0, 10, for(k=0, n, print1(T(k, n - k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A276586 n) (A276586bi (A002262 n) (A025581 n)))
    (define (A276586bi row col) (A276085 (A066117bi (+ 1 row) (+ 1 col))))
    

Formula

A(row,col) = Sum_{k=0..row} binomial(row,k)*A002110(col+k).
A(row,col) = A276085(A066117(row+1,col+1)).
Showing 1-10 of 13 results. Next