cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A099885 Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)).

Original entry on oeis.org

1, 2, 6, 12, 20, 40, 120, 240, 272, 544, 1632, 3264, 5440, 10880, 32640, 65280, 65792, 131584, 394752, 789504, 1315840, 2631680, 7895040, 15790080, 17895424, 35790848, 107372544, 214745088, 357908480, 715816960, 2147450880, 4294901760
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2004

Keywords

Comments

XOR BINOMIAL transform of this sequence is A099886.

Examples

			XOR difference triangle of the powers of 2 (A099884) begins:
.
            (central terms)
                   |
                   |
                   1;
                   2,   3;
              4,   6,   5;
              8,  12,  10,  15;
        16,  24,  20,  30,  17;
        32,  48,  40,  60,  34,  51;
   64,  96,  80, 120,  68, 102,  85;
  128, 192, 160, 240, 136, 204, 170, 255;
  ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(B);B=0;for(i=0,n\2,B=bitxor(B,binomial(n\2,i)%2*2^(n\2-i)));2^((n+1)\2)*B}
    
  • Python
    def A099885(n): return sum((bool(~(m:=n>>1)&m-k)^1)<>1)+1))<<(n+1>>1) # Chai Wah Wu, May 03 2023

Formula

a(n) = 2^floor((n+1)/2)*A001317(floor(n/2)), where A001317 forms the XOR BINOMIAL transform of the powers of 2.
It appears that a(2*n) = A117998(n). - Peter Bala, Feb 01 2017

A276618 Transpose of table A099884.

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 15, 10, 12, 8, 17, 30, 20, 24, 16, 51, 34, 60, 40, 48, 32, 85, 102, 68, 120, 80, 96, 64, 255, 170, 204, 136, 240, 160, 192, 128, 257, 510, 340, 408, 272, 480, 320, 384, 256, 771, 514, 1020, 680, 816, 544, 960, 640, 768, 512, 1285, 1542, 1028, 2040, 1360, 1632, 1088, 1920, 1280, 1536, 1024
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2016

Keywords

Comments

See A099884.

Crossrefs

Transpose: A099884.

Programs

A158875 Row sums of A099884, the XOR difference triangle of the powers of 2.

Original entry on oeis.org

1, 5, 15, 45, 107, 265, 615, 1485, 3227, 7225, 15735, 35325, 75019, 163145, 348135, 761805, 1589147, 3374905, 7077495, 15138045, 31390219, 66122825, 137816295, 292344525, 601532059, 1253593145, 2591401335, 5435447805, 11157226763
Offset: 0

Views

Author

Paul D. Hanna, Apr 11 2009

Keywords

Examples

			Triangle A099884 begins:
1;
2, 3;
4, 6, 5;
8, 12, 10, 15;
16, 24, 20, 30, 17;
32, 48, 40, 60, 34, 51;
64, 96, 80, 120, 68, 102, 85;
128, 192, 160, 240, 136, 204, 170, 255;
256, 384, 320, 480, 272, 408, 340, 510, 257; ...
where terms in any column are formed from the XOR operation between
adjacent terms of the prior column, with column 0 being powers of 2.
		

Crossrefs

Cf. A099884.

Programs

  • PARI
    {a(n)=local(B,RS=0); for(k=0,n, B=0; for(i=0, k, B=bitxor(B, binomial(k, i)%2*2^(n-i))); RS+=B);RS}

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A003401 Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
Offset: 1

Views

Author

Keywords

Comments

The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024

Examples

			34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
  • Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
  • Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.

Crossrefs

Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.

Programs

  • Haskell
    a003401 n = a003401_list !! (n-1)
    a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Mathematica
    Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
    nn=10; logs=Log[2,{2,3,5,17,257,65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i,j,k,l,m,n}.logs; If[z<=nn, Sow[2^z]], {i,0,lim2}, {j,0,1}, {k,0,1}, {l,0,1}, {m,0,1}, {n,0,1}]][[2,1]]]
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    for(n=1,10^4,my(t=eulerphi(n));if(t/2^valuation(t,2)==1,print1(n,", "))); \\ Joerg Arndt, Jul 29 2014
    
  • PARI
    is(n)=n>>=valuation(n,2); if(n<7, return(n>0)); my(k=logint(logint(n,2),2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
    
  • PARI
    is(n)=n>>=valuation(n,2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
    
  • Python
    from sympy import totient
    A003401_list = [n for n in range(1,10**4) if format(totient(n),'b').count('1') == 1]
    # Chai Wah Wu, Jan 12 2015

Formula

Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015

Extensions

Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020

A248663 Binary encoding of the prime factors of the squarefree part of n.

Original entry on oeis.org

0, 1, 2, 0, 4, 3, 8, 1, 0, 5, 16, 2, 32, 9, 6, 0, 64, 1, 128, 4, 10, 17, 256, 3, 0, 33, 2, 8, 512, 7, 1024, 1, 18, 65, 12, 0, 2048, 129, 34, 5, 4096, 11, 8192, 16, 4, 257, 16384, 2, 0, 1, 66, 32, 32768, 3, 20, 9, 130, 513, 65536, 6, 131072, 1025, 8, 0, 36, 19
Offset: 1

Views

Author

Peter Kagey, Jan 11 2015

Keywords

Comments

The binary digits of a(n) encode the prime factorization of A007913(n), where the i-th digit from the right is 1 if and only if prime(i) divides A007913(n), otherwise 0. - Robert Israel, Jan 12 2015
Old name: a(1) = 0; a(A000040(n)) = 2^(n-1), and a(n*m) = a(n) XOR a(m).
XOR is the bitwise exclusive or operation (A003987).
a(k^2) = 0 for a natural number k.
Equivalently, the i-th binary digit from the right is 1 iff prime(i) divides n an odd number of times, otherwise zero. - Ethan Beihl, Oct 15 2016
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443, with scheme explained in A206284), then A048675(n) gives the evaluation of that polynomial at x=2. This sequence is otherwise similar, except the polynomial is evaluated over the field GF(2), which implies also that all its coefficients are essentially reduced modulo 2. - Antti Karttunen, Dec 11 2015
Squarefree numbers (A005117) give the positions k where a(k) = A048675(k). - Antti Karttunen, Oct 29 2016
From Peter Munn, Jun 07 2021: (Start)
When we encode polynomials with nonnegative integer coefficients as described by Antti Karttunen above, polynomial addition is represented by integer multiplication, multiplication is represented by A297845(.,.), and this sequence represents a surjective semiring homomorphism to polynomials in GF(2)[x] (encoded as described in A048720). The mapping of addition operations by this homomorphism is part of the sequence definition: "a(n*m) = a(n) XOR a(m)". The mapping of multiplication is given by a(A297845(n, k)) = A048720(a(n), a(k)).
In a related way, A329329 defines a representation of a different set of polynomials as positive integers, namely polynomials in GF(2)[x,y].
Let P_n(x,y) denote the polynomial represented, as in A329329, by n >= 1. If 0 is substituted for y in P_n(x,y), we get a polynomial P'_n(x,y) (in which y does not appear, of course) that is equivalent to a polynomial P'_n(x) in GF(2)[x]. a(n) is the integer encoding of P'_n(x) (described in A048720).
Viewed as above, this sequence represents another surjective homomorphism, a homomorphism between polynomial rings, with A329329(.,.)/A059897(.,.) and A048720(.,.)/A003987(.,.) as the respective ring operations.
a(n) can be composed as a(n) = A048675(A007913(n)) and the effect of the A007913(.) component corresponds to different operations on the respective polynomial domains of the two homomorphisms described above. In the first homomorphism, coefficients are reduced modulo 2; in the second, 0 is substituted for y. This is illustrated in the examples.
(End)

Examples

			a(3500) = a(2^2 * 5^3 * 7) = a(2) XOR a(2) XOR a(5) XOR a(5) XOR a(5) XOR a(7) = 1 XOR 1 XOR 4 XOR 4 XOR 4 XOR 8 = 0b0100 XOR 0b1000 = 0b1100 = 12.
From _Peter Munn_, Jun 07 2021: (Start)
The examples in the table below illustrate the homomorphisms (between polynomial structures) represented by this sequence.
The staggering of the rows is to show how the mapping n -> A007913(n) -> A048675(A007913(n)) = a(n) relates to the encoded polynomials, as not all encodings are relevant at each stage.
For an explanation of each polynomial encoding, see the sequence referenced in the relevant column heading. (Note also that A007913 generates squarefree numbers, and with these encodings, all squarefree numbers represent equivalent polynomials in N[x] and GF(2)[x,y].)
                     |<-----    encoded polynomials    ----->|
  n  A007913(n) a(n) |         N[x]    GF(2)[x,y]    GF(2)[x]|
                     |Cf.:  A206284       A329329     A048720|
--------------------------------------------------------------
  24                            x+3         x+y+1
          6                     x+1           x+1
                  3                                       x+1
--------------------------------------------------------------
  36                           2x+2          xy+y
          1                       0             0
                  0                                         0
--------------------------------------------------------------
  60                        x^2+x+2       x^2+x+y
         15                   x^2+x         x^2+x
                  6                                     x^2+x
--------------------------------------------------------------
  90                       x^2+2x+1      x^2+xy+1
         10                   x^2+1         x^2+1
                  5                                     x^2+1
--------------------------------------------------------------
This sequence is a left inverse of A019565. A019565(.) maps a(n) to A007913(n) for all n, effectively reversing the second stage of the mapping from n to a(n) shown above. So, with the encodings used here, A019565(.) represents each of two injective homomorphisms that map polynomials in GF(2)[x] to equivalent polynomials in N[x] and GF(2)[x,y] respectively.
(End)
		

Crossrefs

A048675 composed with A007913. A007814 composed with A225546.
A left inverse of A019565.
Other sequences used to express relationship between terms of this sequence: A003961, A007913, A331590, A334747.
Cf. also A099884, A277330.
A087207 is the analogous sequence with OR.
A277417 gives the positions where coincides with A277333.
A000290 gives the positions of zeros.

Programs

  • Haskell
    import Data.Bits (xor)
    a248663 = foldr (xor) 0 . map (\i -> 2^(i - 1)) . a112798_row
    -- Peter Kagey, Sep 16 2016
    
  • Maple
    f:= proc(n)
    local F,f;
    F:= select(t -> t[2]::odd, ifactors(n)[2]);
    add(2^(numtheory:-pi(f[1])-1), f = F)
    end proc:
    seq(f(i),i=1..100); # Robert Israel, Jan 12 2015
  • Mathematica
    a[1] = 0; a[n_] := a[n] = If[PrimeQ@ n, 2^(PrimePi@ n - 1), BitXor[a[#], a[n/#]] &@ FactorInteger[n][[1, 1]]]; Array[a, 66] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    A248663(n) = vecsum(apply(p -> 2^(primepi(p)-1),factor(core(n))[,1])); \\ Antti Karttunen, Feb 15 2021
    
  • Python
    from sympy import factorint, primepi
    from sympy.ntheory.factor_ import core
    def a048675(n):
        f=factorint(n)
        return 0 if n==1 else sum([f[i]*2**(primepi(i) - 1) for i in f])
    def a(n): return a048675(core(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 21 2017
  • Ruby
    require 'prime'
    def f(n)
      a = 0
      reverse_primes = Prime.each(n).to_a.reverse
      reverse_primes.each do |prime|
        a <<= 1
        while n % prime == 0
          n /= prime
          a ^= 1
        end
      end
      a
    end
    (Scheme, with memoizing-macro definec)
    (definec (A248663 n) (cond ((= 1 n) 0) ((= 1 (A010051 n)) (A000079 (- (A000720 n) 1))) (else (A003987bi (A248663 (A020639 n)) (A248663 (A032742 n)))))) ;; Where A003987bi computes bitwise-XOR as in A003987.
    ;; Alternatively:
    (definec (A248663 n) (cond ((= 1 n) 0) (else (A003987bi (A000079 (- (A055396 n) 1)) (A248663 (A032742 n))))))
    ;; Antti Karttunen, Dec 11 2015
    

Formula

a(1) = 0; for n > 1, if n is a prime, a(n) = 2^(A000720(n)-1), otherwise a(A020639(n)) XOR a(A032742(n)). [After the definition.] - Antti Karttunen, Dec 11 2015
For n > 1, this simplifies to: a(n) = 2^(A055396(n)-1) XOR a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n. Cf. a similar formula for A048675.]
Other identities and observations. For all n >= 0:
a(n) = A048672(A100112(A007913(n))). - Peter Kagey, Dec 10 2015
From Antti Karttunen, Dec 11 2015, Sep 19 & Oct 27 2016, Feb 15 2021: (Start)
a(n) = a(A007913(n)). [The result depends only on the squarefree part of n.]
a(n) = A048675(A007913(n)).
a(A206296(n)) = A168081(n).
a(A260443(n)) = A264977(n).
a(A265408(n)) = A265407(n).
a(A275734(n)) = A275808(n).
a(A276076(n)) = A276074(n).
a(A283477(n)) = A006068(n).
(End)
From Peter Munn, Jan 09 2021 and Apr 20 2021: (Start)
a(n) = A007814(A225546(n)).
a(A019565(n)) = n; A019565(a(n)) = A007913(n).
a(A003961(n)) = 2 * a(n).
a(A297845(n, k)) = A048720(a(n), a(k)).
a(A329329(n, k)) = A048720(a(n), a(k)).
a(A059897(n, k)) = A003987(a(n), a(k)).
a(A331590(n, k)) = a(n) + a(k).
a(A334747(n)) = a(n) + 1.
(End)

Extensions

New name from Peter Munn, Nov 01 2023

A264977 a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 6, 7, 8, 5, 2, 7, 12, 1, 14, 15, 16, 13, 10, 7, 4, 5, 14, 11, 24, 13, 2, 15, 28, 1, 30, 31, 32, 29, 26, 7, 20, 13, 14, 3, 8, 1, 10, 11, 28, 5, 22, 19, 48, 21, 26, 15, 4, 13, 30, 19, 56, 29, 2, 31, 60, 1, 62, 63, 64, 61, 58, 7, 52, 29, 14, 19, 40, 25, 26, 3, 28, 13, 6, 11, 16, 9, 2, 11, 20, 1, 22
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2015

Keywords

Comments

a(n) is the n-th Stern polynomial (cf. A260443, A125184) evaluated at X = 2 over the field GF(2).
For n >= 1, a(n) gives the index of the row where n occurs in array A277710.

Examples

			In this example, binary numbers are given zero-padded to four bits.
a(2) = 2a(1) = 2 * 1 = 2.
a(3) = a(1) XOR a(2) = 1 XOR 2 = 0001 XOR 0010 = 0011 = 3.
a(4) = 2a(2) = 2 * 2 = 4.
a(5) = a(2) XOR a(3) = 2 XOR 3 = 0010 XOR 0011 = 0001 = 1.
a(6) = 2a(3) = 2 * 3 = 6.
a(7) = a(3) XOR a(4) = 3 XOR 4 = 0011 XOR 0100 = 0111 = 7.
		

Crossrefs

Cf. A023758 (the fixed points).
Cf. also A068156, A168081, A265407.
Cf. A277700 (binary weight of terms).
Cf. A277701, A277712, A277713 (positions of 1's, 2's and 3's in this sequence).
Cf. A277711 (position of the first occurrence of each n in this sequence).
Cf. also arrays A277710, A099884.

Programs

  • Mathematica
    recurXOR[0] = 0; recurXOR[1] = 1; recurXOR[n_] := recurXOR[n] = If[EvenQ[n], 2recurXOR[n/2], BitXor[recurXOR[(n - 1)/2 + 1], recurXOR[(n - 1)/2]]]; Table[recurXOR[n], {n, 0, 100}] (* Jean-François Alcover, Oct 23 2016 *)
  • Python
    class Memoize:
        def _init_(self, func):
            self.func=func
            self.cache={}
        def _call_(self, arg):
            if arg not in self.cache:
                self.cache[arg] = self.func(arg)
            return self.cache[arg]
    @Memoize
    def a(n): return n if n<2 else 2*a(n//2) if n%2==0 else a((n - 1)//2)^a((n + 1)//2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 27 2017

Formula

a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).
a(n) = A248663(A260443(n)).
a(n) = A048675(A277330(n)). - Antti Karttunen, Oct 27 2016
Other identities. For all n >= 0:
a(n) = n - A265397(n).
From Antti Karttunen, Oct 28 2016: (Start)
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A010873(a(n)) = A010873(n). [a(n) mod 4 = n mod 4.]
A001511(a(n)) = A001511(n) = A055396(A277330(n)). [In general, the 2-adic valuation of n is preserved.]
A010060(a(n)) = A011655(n).
a(n) <= n.
For n >= 2, a((2^n)+1) = (2^n) - 3.
The following two identities are so far unproved:
For n >= 2, a(3*A000225(n)) = a(A068156(n)) = 5.
For n >= 2, a(A068156(n)-2) = A062709(n) = 2^n + 3.
(End)

A255483 Infinite square array read by antidiagonals downwards: T(0,m) = prime(m), m >= 1; for n >= 1, T(n,m) = T(n-1,m)*T(n-1,m+1)/gcd(T(n-1,m), T(n-1,m+1))^2, m >= 1.

Original entry on oeis.org

2, 3, 6, 5, 15, 10, 7, 35, 21, 210, 11, 77, 55, 1155, 22, 13, 143, 91, 5005, 39, 858, 17, 221, 187, 17017, 85, 3315, 1870, 19, 323, 247, 46189, 133, 11305, 5187, 9699690, 23, 437, 391, 96577, 253, 33649, 21505, 111546435, 46
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2015

Keywords

Comments

The first column of the array is given by A123098; subsequent columns are obtained by applying the function A003961, i.e., replacing each prime factor by the next larger prime. - M. F. Hasler, Sep 17 2016
Interpretation with respect to A329329 from Peter Munn, Feb 08 2020: (Start)
With respect to the ring defined by A329329 and A059897, the first row gives powers of 3, the first column gives powers of 6, both in order of increasing exponent, and the body of the table gives their products. A329049 is the equivalent table in which the first column gives powers of 4.
A099884 is the equivalent table for the ring defined by A048720 and A003987. That ring is an image of the polynomial ring GF(2)[x] using a standard representation of the polynomials as integers. A329329 describes a comparable mapping to integers from the related polynomial ring GF(2)[x,y].
Using these mappings, the tables here and in A099884 are matching images: the first row represents powers of x, the first column represents powers of (x+1) and the body of the table gives their products.
Hugo van der Sanden's formula (see formula section) indicates that A019565 provides a mapping from A099884. In the wider terms described above, A019565 is an injective homomorphism between images of the 2 polynomial rings, and maps the image of each GF(2)[x] polynomial to the image of the equivalent GF(2)[x,y] polynomial.
(End)

Examples

			The top left corner of the array, row index 0..5, column index 1..10:
    2,    3,     5,     7,    11,     13,     17,     19,      23,      29
    6,   15,    35,    77,   143,    221,    323,    437,     667,     899
   10,   21,    55,    91,   187,    247,    391,    551,     713,    1073
  210, 1155,  5005, 17017, 46189,  96577, 215441, 392863,  765049, 1363783
   22,   39,    85,   133,   253,    377,    527,    703,     943,    1247
  858, 3315, 11305, 33649, 95381, 198679, 370481, 662929, 1175921, 1816879
		

Crossrefs

First two columns = A123098, A276804.
A kind of generalization of A036262.
Transpose: A276578, terms sorted into ascending order: A276579.
A003987, A048720, A059897, A329049 relate to the A329329 polynomial ring interpretation.

Programs

  • Maple
    T:= proc(n, m) option remember; `if`(n=0, ithprime(m),
          T(n-1, m)*T(n-1, m+1)/igcd(T(n-1, m), T(n-1, m+1))^2)
        end:
    seq(seq(T(n, 1+d-n), n=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2015
  • Mathematica
    T[n_, m_] := T[n, m] = If[n == 0, Prime[m], T[n-1, m]*T[n-1, m+1]/GCD[T[n-1, m], T[n-1, m+1]]^2]; Table[Table[T[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
  • PARI
    T=matrix(N=15,N);for(j=1,N,T[1,j]=prime(j));(f(x,y)=x*y/gcd(x,y)^2);for(k=1,N-1,for(j=1,N-k,T[k+1,j]=f(T[k,j],T[k,j+1])));A255483=concat(vector(N,i,vector(i,j,T[j,1+i-j]))) \\ M. F. Hasler, Sep 17 2016
    
  • PARI
    A255483(n,k)=prod(j=0,n,if(bitand(n-j,j),1,prime(j+k))) \\ M. F. Hasler, Sep 18 2016
    
  • Scheme
    (define (A255483 n) (A255483bi (A002262 n) (+ 1 (A025581 n))))
    ;; Then use either an almost standalone version (requiring only A000040):
    (define (A255483bi row col) (if (zero? row) (A000040 col) (let ((a (A255483bi (- row 1) col)) (b (A255483bi (- row 1) (+ col 1)))) (/ (lcm a b) (gcd a b)))))
    ;; Or one based on M. F. Hasler's new recurrence:
    (define (A255483bi row col) (if (= 1 col) (A123098 row) (A003961 (A255483bi row (- col 1)))))
    ;; Antti Karttunen, Sep 18 2016

Formula

T(n,1) = A123098(n), T(n,m+1) = A003961(T(n,m)), for all n >= 0, m >= 1. - M. F. Hasler, Sep 17 2016
T(n,m) = Prod_{k=0..n} prime(k+m)^(!(n-k & k)) where !x is 1 if x=0 and 0 else, and & is binary AND. - M. F. Hasler, Sep 18 2016
From Antti Karttunen, Sep 18 2016: (Start)
For n >= 1, m >= 1, T(n,m) = lcm(T(n-1,m),T(n-1,m+1)) / gcd(T(n-1,m),T(n-1,m+1)).
T(n,k) = A007913(A066117(n+1,k)).
T(n,k) = A019565(A099884(n,k-1)) [After Hugo van der Sanden's observations on SeqFan-list].
(End)
From Peter Munn, Jan 08 2020: (Start)
T(0,1) = 2, and for n >= 0, k >= 1, T(n+1,k) = A329329(T(n,k), 6), T(n,k+1) = A329329(T(n,k), 3).
T(n,k) = A329329(T(n,1), T(0,k)).
(End)

A277820 Square array: A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 3, 2, 5, 6, 7, 15, 10, 9, 4, 17, 30, 27, 12, 13, 51, 34, 45, 20, 23, 14, 85, 102, 119, 60, 57, 18, 11, 255, 170, 153, 68, 75, 54, 29, 8, 257, 510, 427, 204, 221, 90, 39, 24, 25, 771, 514, 765, 340, 359, 238, 105, 40, 43, 26, 1285, 1542, 1799, 1020, 937, 306, 187, 120, 125, 46, 31, 3855, 2570, 2313, 1028, 1275, 854, 461, 136, 135, 114, 33, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Comments

For all n >= 1, A277818 (= A268389(n)+1) gives the (one-based) index of the column where n is located in this array, while A268671(n) gives the (one-based) index of the row where it is on.
This array is obtained when one selects from A277320 the columns 1, 3, 5, 15, 17, 51, ..., i.e., those with an index A001317(k).

Examples

			The top left corner of the array:
   1,  3,   5,  15,  17,   51,   85,  255,   257,   771,  1285,  3855
   2,  6,  10,  30,  34,  102,  170,  510,   514,  1542,  2570,  7710
   7,  9,  27,  45, 119,  153,  427,  765,  1799,  2313,  6939, 11565
   4, 12,  20,  60,  68,  204,  340, 1020,  1028,  3084,  5140, 15420
  13, 23,  57,  75, 221,  359,  937, 1275,  3341,  5911, 14649, 19275
  14, 18,  54,  90, 238,  306,  854, 1530,  3598,  4626, 13878, 23130
  11, 29,  39, 105, 187,  461,  599, 1785,  2827,  7453, 10023, 26985
   8, 24,  40, 120, 136,  408,  680, 2040,  2056,  6168, 10280, 30840
  25, 43, 125, 135, 393,  667, 1965, 2295,  6425, 11051, 32125, 34695
  26, 46, 114, 150, 442,  718, 1874, 2550,  6682, 11822, 29298, 38550
  31, 33,  99, 165, 495,  561, 1619, 2805,  7967,  8481, 25443, 42405
  28, 36, 108, 180, 476,  612, 1708, 3060,  7196,  9252, 27756, 46260
  21, 63,  65, 195, 325,  975, 1105, 3315,  5397, 16191, 16705, 50115
  22, 58,  78, 210, 374,  922, 1198, 3570,  5654, 14906, 20046, 53970
  19, 53,  95, 225, 291,  869, 1455, 3825,  4883, 13621, 24415, 57825
  16, 48,  80, 240, 272,  816, 1360, 4080,  4112, 12336, 20560, 61680
  49, 83, 245, 287, 801, 1379, 4005, 4335, 12593, 21331, 62965, 73247
  50, 86, 250, 270, 786, 1334, 3930, 4590, 12850, 22102, 64250, 69390
  55, 89, 235, 317, 839, 1481, 3675, 4845, 14135, 22873, 60395, 80957
		

Crossrefs

Inverse permutation: A277821.
Transpose: A277819.
Row 1: A001317.
Column 1: A065621, column 2: A277823, column 3: A277825.
Other related tables or permutations: A277880, A277901.

Programs

Formula

A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)).
A(r,c) = A048675(A277810(r,c)).
As a composition of other permutations:
a(n) = A277901(A277880(n)).

A066117 Triangle read by rows: T(n,k) = T(n-1,k-1)*T(n,k-1) and T(n,1) = prime(n).

Original entry on oeis.org

2, 3, 6, 5, 15, 90, 7, 35, 525, 47250, 11, 77, 2695, 1414875, 66852843750, 13, 143, 11011, 29674645, 41985913344375, 2806877704512541816406250, 17, 221, 31603, 347980633, 10326201751150285, 433555011900329243987584396875
Offset: 1

Views

Author

Henry Bottomley, Dec 05 2001

Keywords

Comments

As a square array read by descending antidiagonals, A(n, k), n >= 1, k >= 1, gives the encoding defined in A297845 of the polynomial (x+1)^(n-1) * x^(k-1). - Peter Munn, Jul 27 2022

Examples

			T(4,3) = T(3,2)*T(4,2) = 15*35 = 525. Rows start
     2;
    3, 6;
  5, 15, 90;
7, 35, 525, 47250;
...
From _Antti Karttunen_, Sep 18 2016: (Start)
Alternatively, this table can be viewed as a square array. Then the top left 5x4 corner looks as:
    2,       3,        5,         7,         11
    6,      15,       35,        77,        143
   90,     525,     2695,     11011,      31603
47250, 1414875, 29674645, 347980633, 2255916949
(End)
		

Crossrefs

Cf. A000040, A006094 and A066116 (three leftmost diagonal of triangular table = three topmost rows of square array).
Cf. A007188, A267096 (two rightmost diagonals of the triangular table = two leftmost columns of square array).
Cf. also A099884, A255483, A276586, A276588 (other arrays derived from this one).

Programs

Formula

From Antti Karttunen, Sep 19 2016: (Start)
When computed as a square array A(row,col), row >= 1, col >= 1:
A(1,col) = A000040(col), for row > 1, A(row,col) = A(row-1,col)*A(row-1,col+1).
A(row,1) = A007188(row-1), for col > 1, A(row,col) = A003961(A(row,col-1)).
For all row >= 1, col >= 1, A055396(A(row,col)) = col.
(End)
A(1,1) = 2; for n > 1, A(n,k) = A297845(A(n-1,k),6); for k > 1, A(n,k) = A297845(A(n,k-1),3). - Peter Munn, Jul 20 2022
Showing 1-10 of 35 results. Next