A358742 First of three consecutive primes p,q,r such that p^3 + q^3 - r^3 is prime.
13, 29, 89, 97, 127, 137, 151, 163, 199, 223, 241, 277, 313, 349, 367, 389, 419, 431, 457, 463, 521, 577, 613, 691, 823, 827, 829, 859, 877, 883, 911, 953, 971, 1049, 1087, 1097, 1129, 1151, 1163, 1217, 1409, 1489, 1499, 1579, 1699, 1723, 1867, 1879, 1993, 2089, 2111, 2141, 2293, 2339, 2399, 2411
Offset: 1
Keywords
Examples
a(3) = 89 is a term because 89, 97, 101 are consecutive primes and 89^3 + 97^3 - 101^3 = 587341 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: q:= 2: r:= 3: while count < 100 do p:= q; q:= r; r:=nextprime(r); if isprime(p^3+q^3-r^3) then count:= count+1; R:= R,p; fi; od: R;
-
Mathematica
Select[Partition[Prime[Range[360]], 3, 1], (s = #[[1]]^3 + #[[2]]^3 - #[[3]]^3) > 0 && PrimeQ[s] &][[;; , 1]] (* Amiram Eldar, Nov 29 2022 *)
-
PARI
a358742(upto) = {my(p1=2, p2=3); forprime(p3=5, upto, if (isprime (p1^3+p2^3-p3^3), print1(p1,", ")); p1=p2; p2=p3)}; a358742(2500) \\ Hugo Pfoertner, Nov 29 2022
-
Python
from itertools import islice from sympy import isprime, nextprime def agen(): p, q, r = 2, 3, 5 while True: if isprime(p**3 + q**3 - r**3): yield p p, q, r = q, r, nextprime(r) print(list(islice(agen(), 56))) # Michael S. Branicky, Nov 29 2022
Comments