A255585 Composite numbers k such that Sum_{i=1..t-1} d(i+1)/d(i) is prime, where d(1), ..., d(t) are the divisors of k in ascending order.
50, 98, 108, 242, 338, 375, 578, 1029, 1058, 1458, 1922, 2738, 3072, 3362, 3993, 4418, 5618, 7442, 8978, 9216, 10658, 13778, 14739, 18818, 20402, 20577, 21218, 22898, 26985, 31250, 34322, 45602, 46875, 49298, 55778, 58564, 59858, 72962, 73167, 74498, 78732
Offset: 1
Keywords
Examples
98 is in the sequence because the divisors of 98 are {1, 2, 7, 14, 49, 98} and 2/1 + 7/2 + 14/7 + 49/14 + 98/49 = 13 is prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..150 from Harvey P. Dale)
Programs
-
Mathematica
lst={};Do[s=0;Do[s=s+Divisors[n][[i+1]]/Divisors[n][[i]],{i,1,Length[Divisors[n]]-1}];If[PrimeQ[s]&&!PrimeQ[n],AppendTo[lst,n]],{n,80000}];lst compQ[n_]:=Module[{d=Divisors[n]},CompositeQ[n]&&PrimeQ[Total[ Rest[d]/ Most[d]]]]; Select[Range[80000],compQ] (* Harvey P. Dale, Sep 03 2015 *)
Comments