A255607 Numbers n such that both 4*n+1 and 6*n+1 are primes.
1, 3, 7, 10, 13, 18, 25, 27, 37, 45, 58, 70, 73, 87, 100, 102, 105, 112, 115, 135, 142, 153, 165, 168, 175, 177, 192, 202, 205, 213, 220, 238, 255, 258, 277, 282, 298, 300, 312, 322, 325, 352, 357, 363, 370, 373, 417, 423, 447, 465, 472, 475, 513, 520
Offset: 1
Examples
10 is in this sequence because 4*10+1=41 and 6*10+1=61 are primes.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[n: n in [1..600] | IsPrime(6*n+1) and IsPrime(4*n+1)];
-
Maple
A255607:=n->`if`(isprime(4*n+1) and isprime(6*n+1), n, NULL): seq(A255607(n), n=1..600); # Wesley Ivan Hurt, Feb 28 2015
-
Mathematica
Select[Range[600], PrimeQ[4 # + 1] && PrimeQ[6 # + 1] &] Select[Range[600],AllTrue[{4#,6#}+1,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2020 *)
-
PARI
for(n=1,10^3,if(isprime(4*n+1)&&isprime(6*n+1),print1(n,", "))) \\ Derek Orr, Mar 01 2015
-
PARI
select( is_A255607(n)=isprime(4*n+1)&&isprime(6*n+1), [1..555]) \\ M. F. Hasler, Dec 13 2019
Formula
a(n) = A130800(n)/2.
Comments