cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255704 Number T(n,k) of n-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 8, 7, 3, 1, 1, 0, 17, 18, 8, 3, 1, 1, 0, 36, 45, 21, 8, 3, 1, 1, 0, 79, 116, 56, 22, 8, 3, 1, 1, 0, 175, 298, 152, 59, 22, 8, 3, 1, 1, 0, 395, 776, 413, 163, 60, 22, 8, 3, 1, 1, 0, 899, 2025, 1131, 450, 166, 60, 22, 8, 3, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2015

Keywords

Examples

			:    o      o     o         o     o     o     o
:  /( )\   /|\   / \       / \    |     |     |
: o o o o o o o o   o     o   o   o     o     o
: |       | |   |  / \   / \     /|\   / \    |
: o       o o   o o   o o   o   o o o o   o   o
:                       |       |     |   |  / \
:                       o       o     o   o o   o
:                                           |
: T(6,3) = 7                                o
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   1,   1;
  0,   4,   3,   1,  1;
  0,   8,   7,   3,  1,  1;
  0,  17,  18,   8,  3,  1, 1;
  0,  36,  45,  21,  8,  3, 1, 1;
  0,  79, 116,  56, 22,  8, 3, 1, 1;
  0, 175, 298, 152, 59, 22, 8, 3, 1, 1;
		

Crossrefs

Columns k=1-10 give: A063524, A002955 (for n>1), A318899, A318900, A318901, A318902, A318903, A318904, A318905, A318906.
Row sums give A000081.
T(2*n+1,n+1) gives A255705.
Cf. A255636.

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
        end:
    T:= (n, k)-> g(n-1, k) -`if`(k=1, 0, g(n-1, k-1)):
    seq(seq(T(n, k), k=1..n), n=1..14);
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[#-1, k] - If[# == k, 1, 0])&] * g[n-j, k], {j, 1, n}]/n];
    T[n_, k_] := g[n-1, k] - If[k == 1, 0, g[n-1, k-1]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

T(n,1) = A255636(n,1), T(n,k) = A255636(n,k) - A255636(n,k-1) for k>1.