cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216669 Total number of parts in all partitions of n into 2 sizes of parts (A002133).

Original entry on oeis.org

2, 5, 14, 20, 39, 52, 74, 102, 134, 158, 208, 259, 284, 361, 409, 488, 538, 634, 678, 838, 857, 1006, 1038, 1270, 1264, 1495, 1500, 1776, 1761, 2084, 2062, 2443, 2300, 2795, 2680, 3194, 3076, 3544, 3403, 4080, 3804, 4518, 4282, 5037, 4673, 5626, 5127, 6088
Offset: 3

Views

Author

Geoffrey Critzer, Sep 13 2012

Keywords

Comments

Also column k=2 of A255768. - Omar E. Pol, Jul 26 2015

Crossrefs

Programs

  • Mathematica
    nn=40;ss=Sum[Sum[y^2 x^(i+j)/(1-y x^i)/(1-y x^j),{j,1,i-1}], {i,1,nn}]; CoefficientList[Series[D[ss,y]/.y->1,{x,0,nn}],x]

Formula

a(n) = Sum_{k=2..n-1} k * A216665(n,k).

A255767 Triangle read by rows: T(n,k) = sum of all parts of all partitions of n into k distinct parts.

Original entry on oeis.org

1, 4, 6, 3, 12, 8, 10, 25, 24, 36, 6, 14, 77, 14, 32, 104, 40, 27, 153, 90, 40, 220, 150, 10, 22, 297, 275, 22, 72, 348, 444, 60, 26, 481, 676, 130, 56, 616, 938, 280, 60, 660, 1455, 450, 15, 80, 880, 1872, 832, 32, 34, 1003, 2618, 1309, 85, 108, 1224, 3312, 2106, 180, 38, 1349, 4465, 3078, 380, 120, 1620, 5540, 4540, 720
Offset: 1

Views

Author

Omar E. Pol, May 21 2015

Keywords

Comments

Row n has length A003056(n) hence the first element of column k is in row A000217(n).
The first element of column k is A000217(k).
Column 1 is A038040.

Examples

			Triangle begins:
    1;
    4;
    6,    3;
   12,    8;
   10,   25;
   24,   36,    6;
   14,   77,   14;
   32,  104,   40;
   27,  153,   90;
   40,  220,  150,   10;
   22,  297,  275,   22;
   72,  348,  444,   60;
   26,  481,  676,  130;
   56,  616,  938,  280;
   60,  660, 1455,  450,  15;
   80,  880, 1872,  832,  32;
   34, 1003, 2618, 1309,  85;
  108, 1224, 3312, 2106, 180;
   38, 1349, 4465, 3078, 380;
  ...
		

Crossrefs

Programs

  • Maple
    A255767 := proc(n,k)
        n*A116608(n,k) ;
    end proc:
    for n from 1 to 20 do
        for k from 1 to A003056(n) do
            printf("%d,",A255767(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 10 2015
    # second Maple program:
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else []; for j from 0 to n/i do zip((x, y)
          ->x+y, %, [`if`(j>0, 0, [][]), b(n-i*j, i-1)], 0) od; %[] fi
        end:
    T:= n-> subsop(1=NULL, n*[b(n, n)])[]:
    seq(T(n), n=1..30);  # Alois P. Heinz, Jul 26 2015
  • Mathematica
    nmax = 30; T = Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[-1 + Product[1 + t x^j/(1 - x^j), {j, 1, nmax}] + O[x]^(nmax+1), x]];
    Table[n*T[[n]], {n, 1, nmax}] // Flatten (* Jean-François Alcover, May 19 2018 *)

Formula

T(n,k) = n * A116608(n,k).

Extensions

a(7) and beyond from R. J. Mathar, Jul 10 2015
Showing 1-2 of 2 results.