cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255808 Numbers with no zeros in base-9 representation.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2015

Keywords

Comments

a(n) = A168183(n) for n <= 72.

Crossrefs

Cf. A007095, A100973 (subsequence).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A052382 (base 10).

Programs

  • Haskell
    a255808 n = a255808_list !! (n-1)
    a255808_list = iterate f 1 where
       f x = 1 + if r < 8 then x else 9 * f x'  where (x', r) = divMod x 9
    
  • Mathematica
    Select[Range[100],DigitCount[#,9,0]==0&] (* or *) With[{upto=100}, Complement[ Range[upto],9*Range[Floor[upto/9]]]] (* Harvey P. Dale, May 29 2019 *)
  • PARI
    isok(n) = vecmin(digits(n, 9)) != 0; \\ Michel Marcus, Jun 29 2019
    
  • Python
    def A255808(n):
        m = ((k:=7*n+1).bit_length()-1)//3
        return sum((1+((k-(1<<3*m))//(7<<3*j)&7))*9**j for j in range(m)) # Chai Wah Wu, Jun 28 2025