A255832 Least m > 0 such that gcd(m^(2n+1)+2, (m+1)^(2n+1)+2) > 1.
51, 40333, 434, 16, 1234, 78607, 8310, 817172, 473, 116, 22650, 736546059, 22, 1080982, 252, 7809, 644, 1786225573
Offset: 1
Crossrefs
Programs
-
Mathematica
A255832[n_] := Module[{m = 1}, While[GCD[m^(2 n + 1) + 2, (m + 1)^(2 n + 1) + 2] <= 1, m++]; m]; Table[A255832[n], {n, 1, 10}] (* Robert Price, Oct 15 2018 *)
-
PARI
a(n,c=2,L=10^6)={n=n*2+1;for(a=1,L,gcd(a^n+c,(a+1)^n+c)>1&&return(n))}
-
Python
from sympy import primefactors, resultant, nthroot_mod from sympy.abc import x def A255832(n): k, t = 0, (n<<1)+1 for p in primefactors(resultant(x**t+2,(x+1)**t+2)): for d in (a for a in nthroot_mod(-2,t,p,all_roots=True) if pow(a+1,t,p)==-2%p): k = min(d,k) if k else d return k # Chai Wah Wu, May 07 2024
Formula
a(n) = A255852(2n+1).
Extensions
a(12)-a(18) from Max Alekseyev, Aug 06 2015
Comments