A255852
Least k > 0 such that gcd(k^n+2, (k+1)^n+2) > 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 1, 51, 1, 40333, 1, 434, 1, 16, 1, 1234, 1, 78607, 1, 8310, 1, 817172, 1, 473, 1, 116, 1, 22650, 1, 736546059, 1, 22, 1, 1080982, 1, 252, 1, 7809, 1, 644, 1, 1786225573, 1
Offset: 0
For n=1, gcd(k^n+2,(k+1)^n+2) = gcd(k+2,k+3) = 1, therefore a(1)=0.
For n=2k, see formula.
For n=3, we have gcd(51^3+2,52^3+2) = 109, and the pair (k,k+1)=(51,52) is the smallest which yields a GCD > 1, therefore a(3)=51.
-
A255852[n_] := Module[{m = 1}, While[GCD[m^n + 2, (m + 1)^n + 2] <= 1, m++]; m];
Join[{1, 0}, Table[A255852[n], {n, 2, 24}]]
-
a(n, c=2, L=10^7, S=1)={n!=1 && for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1&&return(a))}
-
from sympy import primefactors,resultant, nthroot_mod
from sympy.abc import x
def A255852(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+2,(x+1)**n+2)):
for d in (a for a in sorted(nthroot_mod(-2,n,p,all_roots=True)) if pow(a+1,n,p)==-2%p):
k = min(d,k) if k else d
break
return k # Chai Wah Wu, May 08 2024
A255869
Least m > 0 such that gcd(m^n+19, (m+1)^n+19) > 1, or 0 if there is no such m.
Original entry on oeis.org
1, 0, 3, 2408, 1, 3976, 608, 28, 1, 88, 23, 464658, 1, 319924724, 3, 7, 1, 1628, 138, 2219409, 1, 6, 5, 594, 1, 872, 3, 92, 1, 392, 65, 2278155, 1, 3755866, 4793, 13, 1, 7873, 3, 614294, 1, 448812437, 5
Offset: 0
For n=0 and n=4, see formula with k=0 resp. k=1.
For n=1, gcd(m^n+19, (m+1)^n+19) = gcd(m+19, m+20) = 1, therefore a(1)=0.
For n=2, gcd(3^2+19, 4^2+19) = 7 and (m,m+1) = (3,4) is the smallest pair which yields a GCD > 1 here.
-
A255869[n_] := Module[{m = 1}, While[GCD[m^n + 19, (m + 1)^n + 19] <= 1, m++]; m]; Join[{1, 0}, Table[A255869[n], {n, 2, 12}]] (* Robert Price, Oct 16 2018 *)
-
a(n,c=19,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}
-
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255869(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+19,(x+1)**n+19)):
for d in (a for a in nthroot_mod(-19,n,p,all_roots=True) if pow(a+1,n,p)==-19%p):
k = min(d,k) if k else d
return k # Chai Wah Wu, May 07 2024
A255853
Least k > 0 such that gcd(k^n+3, (k+1)^n+3) > 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 6, 56, 3, 29, 96, 1159823, 384, 9, 3, 1994117680, 13, 247, 6, 15, 3, 1256, 4, 25211925041, 15, 5785, 3, 93602696971, 24, 11, 6, 182, 3, 4644, 92, 12506, 9, 13, 3, 484, 2, 420, 6, 130, 3, 16032496, 12
Offset: 0
For n=1, gcd(k^n+3, (k+1)^n+3) = gcd(k+3, k+4) = 1, therefore a(1)=0.
For n=2, we have gcd(6^2+3, 7^2+3) = gcd(39, 52) = 13, and the pair (k,k+1)=(6,7) is the smallest which yields a GCD > 1, therefore a(2)=6.
-
A255853[n_] := Module[{m = 1}, While[GCD[m^n + 3, (m + 1)^n + 3] <= 1, m++]; m]; Join[{1, 0}, Table[A255853[n], {n, 2, 10}]] (* Robert Price, Oct 15 2018 *)
-
a(n,c=3,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
-
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255853(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+3,(x+1)**n+3)):
for d in (a for a in sorted(nthroot_mod(-3,n,p,all_roots=True)) if pow(a+1,n,p)==-3%p):
k = min(d,k) if k else d
break
return int(k) # Chai Wah Wu, May 08 2024
A255856
Least k > 0 such that gcd(k^n+6, (k+1)^n+6) > 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 2, 1, 48, 9, 1, 19, 14, 1, 2, 77364635, 1, 1943, 2, 1, 5, 299788383228819788, 1, 1578270389554680057141787800241971645032008710129107338825798, 9, 1, 2, 6676, 1, 415, 2, 1, 39, 168338080349, 1, 305, 6806, 1, 2, 9, 1
Offset: 0
For n=1, gcd(k^n+6, (k+1)^n+6) = gcd(k+6, k+7) = 1, therefore a(1)=0.
For n=2, we have gcd(2^2+6, 3^2+6) = gcd(10, 15) = 5, and the pair (k,k+1)=(2,3) is the smallest which yields a gcd > 1, therefore a(2)=2.
For n=3k, see formula.
-
A255856[n_] := Module[{m = 1}, While[GCD[m^n + 6, (m + 1)^n + 6] <= 1, m++]; m]; Join[{1, 0}, Table[A255856[n], {n, 2, 10}]] (* Robert Price, Oct 15 2018 *)
-
a(n,c=6,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
-
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255856(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+6,(x+1)**n+6)):
for d in (a for a in sorted(nthroot_mod(-6,n,p,all_roots=True)) if pow(a+1,n,p)==-6%p):
k = min(d,k) if k else d
break
return int(k) # Chai Wah Wu, May 09 2024
A255857
Least k > 0 such that gcd(k^n+7,(k+1)^n+7) > 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 14, 320, 56, 675113, 224, 13, 5, 283, 33, 192, 26, 242, 5, 2, 10, 140, 5, 50, 142, 29, 18, 605962, 11, 97, 234881024, 951, 5, 3332537854, 14
Offset: 0
For n=0, gcd(k^0+7, (k+1)^0+7) = gcd(8, 8) = 8 for any k > 0, therefore a(0)=1 is the smallest possible positive value.
For n=1, gcd(k^n+7, (k+1)^n+7) = gcd(k+7, k+8) = 1, therefore a(1)=0.
For n=2, we have gcd(14^2+7, 15^2+7) = gcd(203, 232) = 29, and the pair (k,k+1)=(14,15) is the smallest which yields a gcd > 1, therefore a(2)=14.
-
A255857[n_] := Module[{m = 1}, While[GCD[m^n + 7, (m + 1)^n + 7] <= 1, m++]; m]; Join[{1, 0}, Table[A255857[n], {n, 2, 25}]] (* Robert Price, Oct 15 2018 *)
-
a(n,c=7,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
-
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255857(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+7,(x+1)**n+7)):
for d in (a for a in sorted(nthroot_mod(-7,n,p,all_roots=True)) if pow(a+1,n,p)==-7%p):
k = min(d,k) if k else d
break
return int(k) # Chai Wah Wu, May 09 2024
A255858
Least k > 0 such that gcd(k^n + 8, (k+1)^n + 8) > 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 1, 5, 1, 5238149, 1, 24747, 1, 5, 1, 1042068640211853141849723, 1, 28913777, 1, 5, 1, 9380, 1, 87940, 1, 5, 1, 677083547, 1, 1584, 1, 5, 1, 5355, 1, 257, 1, 5, 1, 118, 1, 3250, 1, 5, 1, 78609080, 1, 1807714890, 1, 5, 1
Offset: 0
For n=1, gcd(k^n + 8, (k+1)^n + 8) = gcd(k+8, k+9) = 1, therefore a(1)=0.
For n=2*k, see formula.
For n=3, we have gcd(5^3 + 8, 6^3 + 8) = gcd(133, 224) = 7, and the pair (k,k+1)=(5,6) is the smallest which yields a GCD > 1, therefore a(3)=5.
-
A255858[n_] := Module[{m = 1}, While[GCD[m^n + 8, (m + 1)^n + 8] <= 1, m++]; m]; Join[{1, 0}, Table[A255858[n], {n, 2, 10}]] (* Robert Price, Oct 15 2018 *)
-
a(n,c=8,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
A255854
Least k > 0 such that gcd(k^n+4, (k+1)^n+4) > 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 8, 210, 1, 82, 128, 4763358550, 1, 22, 8, 4050643070777669523228, 1, 1010633974733, 7784, 100, 1, 26627469676193276478340, 8, 179, 1, 4082, 48, 1293523748876425462850, 1, 173, 8, 5, 1, 2423, 320, 342, 1, 1162, 8, 93, 1, 455207, 128, 22, 1, 11383, 8, 58768, 1, 91, 96, 306824898, 1, 187751, 8, 84, 1
Offset: 0
For n=1, gcd(k^n+4, (k+1)^n+4) = gcd(k+4, k+5) = 1, therefore a(1)=0.
For n=2, we have gcd(8^2+4, 9^2+4) = gcd(68, 85) = 17, and the pair (k,k+1)=(8,9) is the smallest with this property, therefore a(2)=8.
More generally, a(8k+2)=8 because gcd(8^(8k+2)+4, 9^(8k+2)+4) = gcd(64^(4k+1)+4, 81^(4k+1)+4) >= 17, since 64 = 81 = 13 (mod 17) and 13^4 = 1 (mod 17).
Also a(4k)=1, because gcd(1^(4k)+4, 2^(4k)+4) = gcd(5, 16^k-1) = 5.
-
A255854[n_] := Module[{m = 1}, While[GCD[m^n + 4, (m + 1)^n + 4] <= 1, m++]; m]; Join[{1, 0}, Table[A255854[n], {n, 2, 6}]] (* Robert Price, Oct 15 2018 *)
-
a(n,c=4,L=10^6,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
-
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255854(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+4,(x+1)**n+4)):
for d in (a for a in sorted(nthroot_mod(-4,n,p,all_roots=True)) if pow(a+1,n,p)==-4%p):
k = min(d,k) if k else d
break
return int(k) # Chai Wah Wu, May 08 2024
A255855
Least k > 0 such that gcd(k^n+5, (k+1)^n+5) > 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 1, 5, 1, 533360, 1, 55, 1, 7, 1, 796479131355665831357, 1, 41, 1, 5, 1, 3775, 1, 42296, 1, 7, 1, 653246700175064613889, 1, 21, 1, 5, 1, 1619, 1, 42842, 1, 7, 1, 2945, 1, 323371, 1, 5, 1, 1102221, 1, 633524110177, 1, 7, 1
Offset: 0
For n=1, gcd(k^n+5, (k+1)^n+5) = gcd(k+5, k+6) = 1, therefore a(1)=0.
For n=2k, see formula.
For n=3, we have gcd(5^3+5, 6^3+5) = 13, and the pair (k,k+1)=(5,6) is the smallest which yields a GCD > 1, therefore a(3)=5.
-
A255855[n_] := Module[{m = 1}, While[GCD[m^n + 5, (m + 1)^n + 5] <= 1, m++]; m]; Join[{1, 0}, Table[A255855[n], {n, 2, 10}]]
-
a(n,c=5,L=10^7,S=1)->for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))
-
from sympy import primefactors, resultant, nthroot_mod
from sympy.abc import x
def A255855(n):
if n == 0: return 1
k = 0
for p in primefactors(resultant(x**n+5,(x+1)**n+5)):
for d in (a for a in sorted(nthroot_mod(-5,n,p,all_roots=True)) if pow(a+1,n,p)==-5%p):
k = min(d,k) if k else d
break
return int(k) # Chai Wah Wu, May 08 2024
A255859
Least m > 0 such that gcd(m^n+9,(m+1)^n+9) > 1, or 0 if there is no such m.
Original entry on oeis.org
1, 0, 18, 533, 1, 32, 288, 484, 1, 364, 6, 176427, 1, 31239, 533, 8, 1, 8424432925592889329288197322308900672459420460792433, 30, 16561, 1, 4, 6, 349, 1, 32, 546, 2579, 1, 375766, 11, 5061867704425915, 1, 5620, 6, 8, 1
Offset: 0
For n=1, gcd(m^n+9, (m+1)^n+9) = gcd(m+9, m+10) = 1, therefore a(1)=0.
For n=2, we have gcd(18^2+9, 19^2+9) = gcd(333, 370) = 37, and the pair (m,m+1)=(18,19) is the smallest which yields a GCD > 1, therefore a(2)=37.
For n=4k, see formula.
-
A255859[n_] := Module[{m = 1}, While[GCD[m^n + 9, (m + 1)^n + 9] <= 1, m++]; m]; Join[{1, 0}, Table[A255859[n], {n, 2, 16}]] (* Robert Price, Oct 16 2018 *)
-
a(n,c=9,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
A255868
Least m > 0 such that gcd(m^n+18, (m+1)^n+18) > 1, or 0 if there is no such m.
Original entry on oeis.org
1, 0, 36, 5, 8, 193801631, 7, 16280817091929, 5, 4, 9216, 815167161742047217904392262, 7, 46, 20, 5, 19, 1837, 1, 224, 8, 7, 56, 13215457, 5, 130689, 221, 4, 5, 1167507, 7, 9708, 65, 7, 20, 63, 1, 4248, 5, 5, 5, 527010, 7
Offset: 0
For n=0, gcd(m^0+18, (m+1)^0+18) = gcd(19, 19) = 19, therefore a(0)=1, the smallest possible (positive) m-value.
For n=1, gcd(m^n+18, (m+1)^n+18) = gcd(m+18, m+19) = 1, therefore a(1)=0.
For n=2, gcd(36^2+18, 37^2+18) = 73 and (m, m+1) = (36, 37) is the smallest pair which yields a GCD > 1 here.
-
A255868[n_] := Module[{m = 1}, While[GCD[m^n + 18, (m + 1)^n + 18] <= 1, m++]; m]; Join[{1, 0}, Table[A255868[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
-
a(n,c=18,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}
Showing 1-10 of 18 results.
Comments