cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118119 Smallest integer m for which gcd(m^n + 1, (m+1)^n + 1) > 1.

Original entry on oeis.org

2, 5, 8, 6, 2, 4, 5, 2, 2, 10, 8, 6, 2, 3, 6, 14, 2, 37, 6, 2, 2, 10, 2, 6, 2, 2, 6, 10, 2, 52, 22, 2, 2, 4, 8, 26, 2, 3, 5, 5, 2, 24, 6, 2, 2, 32, 6, 4, 2, 2, 8, 5, 2, 6, 5, 4, 2, 230, 2, 44, 2, 2, 17, 4, 2, 55, 5, 2, 2, 34, 2, 9, 2, 3, 8, 4, 2, 6, 6, 2, 2, 2, 3
Offset: 2

Views

Author

Adam Kertesz, May 12 2006; May 13 2006

Keywords

Comments

Let f(x) := x^n + c and g(x) := (x+1)^n + c. It can be shown that there exists an integer polynomial s(x) and t(x) such that s(x) f(x) + t(x) g(x) = resultant(f, g) for all x. Let p be a prime number such that f(x_0) == 0 (mod p) and g(x_0) == 0 (mod p) for some x_0 in Z/pZ. Then, s(x_0) f(x_0) + t(x_0) g(x_0) == 0 == resultant(f,g) (mod p). So, p|resultant(f,g). If gcd(f(x_0), g(x_0)) > 1 for some integer x_0, there exists a prime number p which divides gcd(f(x_0), g(x_0)). We can assume that p is a prime factor of resultant(f,g). Let S be a set of x (in Z/pZ) such that x^n == -c (mod p). If we are able to find consecutive terms y, y+1 in S, then y is one of the solutions such that gcd(f(y),g(y)) > 1. - Hiroaki Yamanouchi, Mar 11 2015

Examples

			a(3)=5 because gcd(2 = 1^3 + 1, 9 = 2^3 + 1) = gcd(9, 28) = gcd(28, 65) = gcd(65, 126) = 1 and gcd(126 = 5^3 + 1, 217 = 6^3 + 1) = 7 > 1.
		

Crossrefs

Sequences of smallest m with gcd(m^n + c, (m+1)^n + c) > 1: A255852 (c=2), A255853 (c=3), A255854 (c=4), A255855 (c=5), A255856 (c=6), A255857 (c=7), A255858 (c=8), A255859 (c=9), A255860 (c=10), A255861 (c=11), A255862 (c=12), A255863 (c=13), A255864 (c=14), A255865 (c=15), A255866 (c=16), A255867 (c=17), A255868 (c=18), A255869 (c=19)

Programs

  • Maple
    A118119 := proc(n) local k ,g; for k from 1 do g := igcd(k^n+1,(k+1)^n+1) ; if g>1 then return k ; end if; end do: end proc: # R. J. Mathar, Mar 07 2011
  • Mathematica
    A118119[n_] := Module[{m = 1}, While[GCD[m^n + 1, (m + 1)^n + 1] <= 1, m++]; m]; Table[A118119[n], {n, 2, 50}] (* Robert Price, Oct 15 2018 *)
  • PARI
    { a(n,c=1) = my(f,g); g=gcdext(x^n+c,(x+1)^n+c); f = factor(lcm(denominator(content(g[1])),denominator(content(g[2]))))[,1]; g=[]; for(i=1,#f, g=concat(g, apply(lift, polrootsmod( gcd([x^n+c,(x+1)^n+c]*Mod(1,f[i])), f[i] ) )); );vecmin(g); }  \\ Max Alekseyev, Aug 06 2015
    
  • PARI
    \\ This naive form is typically faster than the polynomial gcd method above. Perhaps a combined algorithm which tries this first before calling the other would be fastest.
    a(n)=for(m=2,oo, if(gcd(m^n + 1, (m+1)^n + 1)>1, return(m))) \\ Charles R Greathouse IV, May 08 2024
    
  • Python
    from itertools import count
    from math import gcd
    def A118119(n): return next(filter(lambda m:gcd(m**n+1,(m+1)**n+1)>1,count(1))) # Chai Wah Wu, May 08 2024

Extensions

Edited by Max Alekseyev, Aug 06 2015

A255852 Least k > 0 such that gcd(k^n+2, (k+1)^n+2) > 1, or 0 if there is no such k.

Original entry on oeis.org

1, 0, 1, 51, 1, 40333, 1, 434, 1, 16, 1, 1234, 1, 78607, 1, 8310, 1, 817172, 1, 473, 1, 116, 1, 22650, 1, 736546059, 1, 22, 1, 1080982, 1, 252, 1, 7809, 1, 644, 1, 1786225573, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.
a(39) <= 8105110304875691067. - Max Alekseyev, Aug 06 2015
a(41) = 34290868, a(49) <= 2002111070, a(47) = 32286649814088452353414982038778088771611290478685407234712300075870593693164721\
99455164873287615636327176797646292254029648497024652505965417768073756378034012\
80883965289152013363422286845290874810700297549641281106223286199677401563701715\
56997846264124867393209579875386439424082082891813462700417531719383529314983727. - Hiroaki Yamanouchi, Mar 10 2015
a(43) = 3585, a(45) = 5, a(51) = 16, a(57) = 22, a(59) = 4495, a(63) = 1291, a(65) = 108, a(67) = 220, a(69) = 218039, a(71) = 2112. - Chai Wah Wu, May 08 2024

Examples

			For n=1, gcd(k^n+2,(k+1)^n+2) = gcd(k+2,k+3) = 1, therefore a(1)=0.
For n=2k, see formula.
For n=3, we have gcd(51^3+2,52^3+2) = 109, and the pair (k,k+1)=(51,52) is the smallest which yields a GCD > 1, therefore a(3)=51.
		

Crossrefs

Programs

  • Mathematica
    A255852[n_] := Module[{m = 1}, While[GCD[m^n + 2, (m + 1)^n + 2] <= 1, m++]; m];
    Join[{1, 0}, Table[A255852[n], {n, 2, 24}]]
  • PARI
    a(n, c=2, L=10^7, S=1)={n!=1 && for(a=S, L, gcd(a^n+c, (a+1)^n+c)>1&&return(a))}
    
  • Python
    from sympy import primefactors,resultant, nthroot_mod
    from sympy.abc import x
    def A255852(n):
        if n == 0: return 1
        k = 0
        for p in primefactors(resultant(x**n+2,(x+1)**n+2)):
            for d in (a for a in sorted(nthroot_mod(-2,n,p,all_roots=True)) if pow(a+1,n,p)==-2%p):
                k = min(d,k) if k else d
                break
        return k # Chai Wah Wu, May 08 2024

Formula

a(2k)=1 for k>=0, because gcd(1^(2k)+2,2^(2k)+2) = gcd(3,4^k-1) = 3.
a(2k+1) = A255832(k).

Extensions

a(25),a(37),a(41),a(47) conjectured by Hiroaki Yamanouchi, Mar 10 2015; confirmed by Max Alekseyev, Aug 06 2015

A255832 Least m > 0 such that gcd(m^(2n+1)+2, (m+1)^(2n+1)+2) > 1.

Original entry on oeis.org

51, 40333, 434, 16, 1234, 78607, 8310, 817172, 473, 116, 22650, 736546059, 22, 1080982, 252, 7809, 644, 1786225573
Offset: 1

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

For n=0 one has gcd(m+2, m+3) = 1 for any m.
See A255852 for the sequence including also even exponents, for which the GCD is > 1 already for m=1 (because gcd(1^2k+2, 2^2k+2) = gcd(3, 2^2k-1) = gcd(3, 4^k-1) = 3), and also for m=4 (because gcd(4^2k+2, 5^2k+2) = gcd(4^2k+2, (5^k-4^k)(5^k+4^k)) >= 3), etc.
a(21) = 3585, a(22) = 5, a(25) = 16, a(28) = 22, a(29) = 4495, a(31) = 1291, a(32) = 108, a(33) = 220, a(34) = 218039, a(35) = 2112. - Chai Wah Wu, May 08 2024

Crossrefs

Cf. A118119, A255853, A255853, ... for other variants, corresponding to different constant offsets (+1, +3, ...) in the arguments of gcd.

Programs

  • Mathematica
    A255832[n_] := Module[{m = 1}, While[GCD[m^(2 n + 1) + 2, (m + 1)^(2 n + 1) + 2] <= 1, m++]; m];  Table[A255832[n], {n, 1, 10}] (* Robert Price, Oct 15 2018 *)
  • PARI
    a(n,c=2,L=10^6)={n=n*2+1;for(a=1,L,gcd(a^n+c,(a+1)^n+c)>1&&return(n))}
    
  • Python
    from sympy import primefactors, resultant, nthroot_mod
    from sympy.abc import x
    def A255832(n):
        k, t = 0, (n<<1)+1
        for p in primefactors(resultant(x**t+2,(x+1)**t+2)):
            for d in (a for a in nthroot_mod(-2,t,p,all_roots=True) if pow(a+1,t,p)==-2%p):
                k = min(d,k) if k else d
        return k # Chai Wah Wu, May 07 2024

Formula

a(n) = A255852(2n+1).

Extensions

a(12)-a(18) from Max Alekseyev, Aug 06 2015

A255854 Least k > 0 such that gcd(k^n+4, (k+1)^n+4) > 1, or 0 if there is no such k.

Original entry on oeis.org

1, 0, 8, 210, 1, 82, 128, 4763358550, 1, 22, 8, 4050643070777669523228, 1, 1010633974733, 7784, 100, 1, 26627469676193276478340, 8, 179, 1, 4082, 48, 1293523748876425462850, 1, 173, 8, 5, 1, 2423, 320, 342, 1, 1162, 8, 93, 1, 455207, 128, 22, 1, 11383, 8, 58768, 1, 91, 96, 306824898, 1, 187751, 8, 84, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(k^n+4, (k+1)^n+4) = gcd(k+4, k+5) = 1, therefore a(1)=0.
For n=2, we have gcd(8^2+4, 9^2+4) = gcd(68, 85) = 17, and the pair (k,k+1)=(8,9) is the smallest with this property, therefore a(2)=8.
More generally, a(8k+2)=8 because gcd(8^(8k+2)+4, 9^(8k+2)+4) = gcd(64^(4k+1)+4, 81^(4k+1)+4) >= 17, since 64 = 81 = 13 (mod 17) and 13^4 = 1 (mod 17).
Also a(4k)=1, because gcd(1^(4k)+4, 2^(4k)+4) = gcd(5, 16^k-1) = 5.
		

Crossrefs

Programs

  • Mathematica
    A255854[n_] := Module[{m = 1}, While[GCD[m^n + 4, (m + 1)^n + 4] <= 1, m++]; m]; Join[{1, 0}, Table[A255854[n], {n, 2, 6}]] (* Robert Price, Oct 15 2018 *)
  • PARI
    a(n,c=4,L=10^6,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
    
  • Python
    from sympy import primefactors, resultant, nthroot_mod
    from sympy.abc import x
    def A255854(n):
        if n == 0: return 1
        k = 0
        for p in primefactors(resultant(x**n+4,(x+1)**n+4)):
            for d in (a for a in sorted(nthroot_mod(-4,n,p,all_roots=True)) if pow(a+1,n,p)==-4%p):
                k = min(d,k) if k else d
                break
        return int(k) # Chai Wah Wu, May 08 2024

Formula

a(4k)=1, a(8k+2)=8 (k>=0), cf. examples.

Extensions

a(7)-a(46) from Hiroaki Yamanouchi, Mar 13 2015
a(47)-a(52) from Max Alekseyev, Aug 06 2015

A255855 Least k > 0 such that gcd(k^n+5, (k+1)^n+5) > 1, or 0 if there is no such k.

Original entry on oeis.org

1, 0, 1, 5, 1, 533360, 1, 55, 1, 7, 1, 796479131355665831357, 1, 41, 1, 5, 1, 3775, 1, 42296, 1, 7, 1, 653246700175064613889, 1, 21, 1, 5, 1, 1619, 1, 42842, 1, 7, 1, 2945, 1, 323371, 1, 5, 1, 1102221, 1, 633524110177, 1, 7, 1
Offset: 0

Views

Author

M. F. Hasler, Mar 08 2015

Keywords

Comments

See A118119, which is the main entry for this class of sequences.

Examples

			For n=1, gcd(k^n+5, (k+1)^n+5) = gcd(k+5, k+6) = 1, therefore a(1)=0.
For n=2k, see formula.
For n=3, we have gcd(5^3+5, 6^3+5) = 13, and the pair (k,k+1)=(5,6) is the smallest which yields a GCD > 1, therefore a(3)=5.
		

Crossrefs

Programs

  • Mathematica
    A255855[n_] := Module[{m = 1}, While[GCD[m^n + 5, (m + 1)^n + 5] <= 1, m++]; m]; Join[{1, 0}, Table[A255855[n], {n, 2, 10}]]
  • PARI
    a(n,c=5,L=10^7,S=1)->for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))
    
  • Python
    from sympy import primefactors, resultant, nthroot_mod
    from sympy.abc import x
    def A255855(n):
        if n == 0: return 1
        k = 0
        for p in primefactors(resultant(x**n+5,(x+1)**n+5)):
            for d in (a for a in sorted(nthroot_mod(-5,n,p,all_roots=True)) if pow(a+1,n,p)==-5%p):
                k = min(d,k) if k else d
                break
        return int(k) # Chai Wah Wu, May 08 2024

Formula

a(2k)=1 for k>=0, because gcd(1^(2k)+5,2^(2k)+5) = gcd(6,4^k-1) = 3.

Extensions

a(11)-a(46) from Hiroaki Yamanouchi, Mar 12 2015
Showing 1-5 of 5 results.