cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255848 a(n) = 2*n^2 + 18.

Original entry on oeis.org

18, 20, 26, 36, 50, 68, 90, 116, 146, 180, 218, 260, 306, 356, 410, 468, 530, 596, 666, 740, 818, 900, 986, 1076, 1170, 1268, 1370, 1476, 1586, 1700, 1818, 1940, 2066, 2196, 2330, 2468, 2610, 2756, 2906, 3060, 3218, 3380, 3546, 3716, 3890, 4068, 4250, 4436
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

For n>3, the sequence gives the 6th diagonal of triangle in A055096.
Also, this is the case k=9 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2. It is noted that a(n)*n = (n + sqrt(3))^3 + (n - sqrt(3))^3.
Equivalently, numbers m such that 2*m-36 is a square.

Crossrefs

Cf. A016825 (first differences), A055096, A189834.
Subsequence of A047463.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+18: n in [0..50]]; // Vincenzo Librandi, Mar 08 2015
    
  • Mathematica
    f[n_] := 2 n^2 + 18; Array[f, 50, 0] (* Robert G. Wilson v, Mar 08 2015 *)
    CoefficientList[Series[(18 - 34 x + 20 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 08 2015 *)
    LinearRecurrence[{3,-3,1},{18,20,26},50] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    vector(50, n, 2*n^2+18) \\ Derek Orr, Mar 09 2015
    
  • Sage
    [2*n^2+18 for n in (0..50)] # Bruno Berselli, Mar 11 2015

Formula

a(n) = 2*A189834(n).
From Vincenzo Librandi, Mar 08 2015: (Start)
G.f.: 2*(9 - 17*x + 10*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/36.
Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/36. (End)
E.g.f.: 2*exp(x)*(9 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Edited by Bruno Berselli, Mar 11 2015