A255853 Least k > 0 such that gcd(k^n+3, (k+1)^n+3) > 1, or 0 if there is no such k.
1, 0, 6, 56, 3, 29, 96, 1159823, 384, 9, 3, 1994117680, 13, 247, 6, 15, 3, 1256, 4, 25211925041, 15, 5785, 3, 93602696971, 24, 11, 6, 182, 3, 4644, 92, 12506, 9, 13, 3, 484, 2, 420, 6, 130, 3, 16032496, 12
Offset: 0
Examples
For n=1, gcd(k^n+3, (k+1)^n+3) = gcd(k+3, k+4) = 1, therefore a(1)=0. For n=2, we have gcd(6^2+3, 7^2+3) = gcd(39, 52) = 13, and the pair (k,k+1)=(6,7) is the smallest which yields a GCD > 1, therefore a(2)=6.
Programs
-
Mathematica
A255853[n_] := Module[{m = 1}, While[GCD[m^n + 3, (m + 1)^n + 3] <= 1, m++]; m]; Join[{1, 0}, Table[A255853[n], {n, 2, 10}]] (* Robert Price, Oct 15 2018 *)
-
PARI
a(n,c=3,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
-
Python
from sympy import primefactors, resultant, nthroot_mod from sympy.abc import x def A255853(n): if n == 0: return 1 k = 0 for p in primefactors(resultant(x**n+3,(x+1)**n+3)): for d in (a for a in sorted(nthroot_mod(-3,n,p,all_roots=True)) if pow(a+1,n,p)==-3%p): k = min(d,k) if k else d break return int(k) # Chai Wah Wu, May 08 2024
Formula
For k>=0, a(6k+4)=3 because gcd(3^(6k+4)+3, 4^(6k+4)+3) = gcd(9^(3k+2)+3, 16^(3k+2)+3) and 9 = 16 = 2 (mod 7) and 2^(3k+2)+3 = 2^2+3 = 0 (mod 7), so the GCD is a positive multiple of 7.
Extensions
a(11)-a(40) from Hiroaki Yamanouchi, Mar 12 2015
a(41)-a(42) from Max Alekseyev, Aug 06 2015
Comments