cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255870 a(n) is the total number of pentagrams in a pentagram fractal after n iterations.

Original entry on oeis.org

1, 6, 26, 76, 191, 411, 816, 1521, 2726, 4741, 8081, 13566, 22536, 37146, 60896, 99436, 161921, 263151, 427086, 692481, 1122056, 1817281, 2942351, 4762926, 7708866, 12475686, 20188766, 32668996, 52862651, 85536891, 138405156, 223948041, 362359586, 586314421
Offset: 0

Views

Author

Kival Ngaokrajang, Mar 08 2015

Keywords

Comments

Inspired by the "calice" (see detail in the CNRS link).
The pentagrams appearing in the calice are scaled down by a factor of 1/phi = 0.61803398... from the pentagrams whose vertex-to-vertex length = d. See illustration of the nested pentagrams in the links.

Crossrefs

Programs

  • Excel
    See links.
    
  • Magma
    I:=[1,6,26,76,191,411,816]; [n le 7 select I[n] else 3*Self(n-1)-Self(n-2)-4*Self(n-3)+3*Self(n-4)+Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Mar 18 2015
  • Mathematica
    CoefficientList[Series[(5 x^6 + x^5 - 10 x^4 - 8 x^3 - 9 x^2 - 3 x - 1)/((1-x)^3 (x+1) (x^2+x-1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 18 2015 *)
  • PARI
    Vec(-(5*x^6+x^5-10*x^4-8*x^3-9*x^2-3*x-1)/((x-1)^3*(x+1)*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Mar 12 2015
    

Formula

a(n) = 3*a(n-1)-a(n-2)-4*a(n-3)+3*a(n-4)+a(n-5)-a(n-6) for n>6. - Colin Barker, Mar 12 2015
G.f.: -(5*x^6+x^5-10*x^4-8*x^3-9*x^2-3*x-1) / ((x-1)^3*(x+1)*(x^2+x-1)). - Colin Barker, Mar 12 2015
a(n) = (-307 + 5*(-1)^n - 3*2^(2-n)*s*((11-5*s)*(1-s)^n - (1+s)^n*(11+5*s)) - 150*(1+n) - 50*(1+n)*(2+n)) / 8 for n>0 where s=sqrt(5). - Colin Barker, Mar 12 2017
E.g.f.: 3*exp(x/2)*(25*cosh(sqrt(5)*x/2) + 11*sqrt(5)*sinh(sqrt(5)*x/2)) - (12 + 5*x)*(23 + 5*x)*cosh(x)/4 - (281 + 25*x*(7 + x))*sinh(x)/4 - 5. - Stefano Spezia, Dec 07 2022