cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255908 Triangle read by rows: T(n,L) = number of rho-labeled graphs with n edges whose labeling is bipartite with boundary value L.

Original entry on oeis.org

2, 4, 8, 8, 32, 48, 16, 128, 288, 384, 32, 512, 1728, 3072, 3840, 64, 2048, 10368, 24576, 38400, 46080, 128, 8192, 62208, 196608, 384000, 552960, 645120, 256, 32768, 373248, 1572864, 3840000, 6635520, 9031680, 10321920, 512, 131072, 2239488, 12582912, 38400000, 79626240, 126443520, 165150720, 185794560, 1024, 524288, 13436928, 100663296, 384000000, 955514880, 1770209280, 2642411520, 3344302080, 3715891200
Offset: 1

Views

Author

Keywords

Comments

A graph with n edges is rho-labeled if there exists a one-to-one mapping from its vertex set to {0,1,...,2n} such that every edge receives as label the absolute difference of its end-vertices and the edge labels are x_1, x_2, ..., x_n where x_i = i or x_i = 2n + 1 - i. A rho-labeling of a bipartite graph is said to be bipartite when the labels of one stable set are smaller than the labels on the other stable set. The largest of the smaller vertex labels is its boundary value.
From Robert G. Wilson v, Jul 05 2015: (Start)
The columns:
T(n, 0) = 2^n,
T(n, 1) = 2^(2n-1),
T(n, 2) = 2^(n+1)*3^(n-2),
T(n, 3) = 3*2^(3n-5),
T(n, 4) = 3*2^(n+3)*5^(n-4),
T(n, 5) = 5*2^(2n-2)*3^(n-4), etc.
The diagonals:
the main, T(n, n-1) = 2^n*n*(n-1!) = 2*A002866,
the second diagonal, T(n, n-2) = 2^n*(n-1)^2*(n-2)! = 4*A014479,
the third diagonal, T(n, n-3) = 2^n*(n-2)^3*(n-3)!,
the k_th diagonal, T(n, n-k) = 2^n*(n-k)^k*(n-k)!, etc.
... (End)

Examples

			For n=5 and L=1, T(5,1)=(2^5)*(1!)*(1+1)^(5-1)=512.
For n=9 and L=3, T(9,3)=12582912.
Triangle, T, begins:
-----------------------------------------------------------------------------
n\L |   0       1         2          3          4          5           6
----|------------------------------------------------------------------------
1   |   2;
2   |   4,      8;
3   |   8,     32,       48;
4   |  16,    128,      288,       384;
5   |  32,    512,     1728,      3072,      3840;
6   |  64,   2048,    10368,     24576,     38400,     46080;
7   | 128,   8192,    62208,    196608,    384000,    552960,     645120;
8   | 256,  32768,   373248,   1572864,   3840000,   6635520,    9031680, ...
...
For n=2 and L=1, T(2,1)=8, because: the bipartite graph <{v1,v2,v3},{x1=v1v2,x2=v1v3}> has rho-labelings (2,1,3),(2,1,4) with L=1 on the stable set {x2} and rho-labelings (1,2,0),(0,4,1) with L=1 on the stable set {x1,x3}; the bipartite graph <{v1,v2,v3,v4},{x1=v1v2,x2=v3v4}> has rho-labeling (0,4,1,3),(1,2,0,3) with L=1 on the stable set {v1,v3} and rho-labeling (4,0,3,1),(2,1,3,0) with L=1 on the stable set {v2,v4}. - _Danny Rorabaugh_, Apr 03 2015
		

Programs

  • Magma
    [2^n*Factorial(l)*(l+1)^(n-l): l in [0..n-1], n in [1..10]]; // Bruno Berselli, Aug 05 2015
  • Mathematica
    t[n_, l_] := 2^n*l!(l+1)^(n-l); Table[ t[n, l], {n, 8}, {l, 0, n-1}] // Flatten (* Robert G. Wilson v, Jul 05 2015 *)

Formula

For n>=1, 0<=L<=n-1, T(n,L)=(2^n)*(L!)*(L+1)^(n-L).