A255908 Triangle read by rows: T(n,L) = number of rho-labeled graphs with n edges whose labeling is bipartite with boundary value L.
2, 4, 8, 8, 32, 48, 16, 128, 288, 384, 32, 512, 1728, 3072, 3840, 64, 2048, 10368, 24576, 38400, 46080, 128, 8192, 62208, 196608, 384000, 552960, 645120, 256, 32768, 373248, 1572864, 3840000, 6635520, 9031680, 10321920, 512, 131072, 2239488, 12582912, 38400000, 79626240, 126443520, 165150720, 185794560, 1024, 524288, 13436928, 100663296, 384000000, 955514880, 1770209280, 2642411520, 3344302080, 3715891200
Offset: 1
Examples
For n=5 and L=1, T(5,1)=(2^5)*(1!)*(1+1)^(5-1)=512. For n=9 and L=3, T(9,3)=12582912. Triangle, T, begins: ----------------------------------------------------------------------------- n\L | 0 1 2 3 4 5 6 ----|------------------------------------------------------------------------ 1 | 2; 2 | 4, 8; 3 | 8, 32, 48; 4 | 16, 128, 288, 384; 5 | 32, 512, 1728, 3072, 3840; 6 | 64, 2048, 10368, 24576, 38400, 46080; 7 | 128, 8192, 62208, 196608, 384000, 552960, 645120; 8 | 256, 32768, 373248, 1572864, 3840000, 6635520, 9031680, ... ... For n=2 and L=1, T(2,1)=8, because: the bipartite graph <{v1,v2,v3},{x1=v1v2,x2=v1v3}> has rho-labelings (2,1,3),(2,1,4) with L=1 on the stable set {x2} and rho-labelings (1,2,0),(0,4,1) with L=1 on the stable set {x1,x3}; the bipartite graph <{v1,v2,v3,v4},{x1=v1v2,x2=v3v4}> has rho-labeling (0,4,1,3),(1,2,0,3) with L=1 on the stable set {v1,v3} and rho-labeling (4,0,3,1),(2,1,3,0) with L=1 on the stable set {v2,v4}. - _Danny Rorabaugh_, Apr 03 2015
Links
- Joseph A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2014), #DS6.
Programs
-
Magma
[2^n*Factorial(l)*(l+1)^(n-l): l in [0..n-1], n in [1..10]]; // Bruno Berselli, Aug 05 2015
-
Mathematica
t[n_, l_] := 2^n*l!(l+1)^(n-l); Table[ t[n, l], {n, 8}, {l, 0, n-1}] // Flatten (* Robert G. Wilson v, Jul 05 2015 *)
Formula
For n>=1, 0<=L<=n-1, T(n,L)=(2^n)*(L!)*(L+1)^(n-L).
Comments