A255982 Number T(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 4, 0, 5, 29, 30, 0, 14, 184, 486, 336, 0, 42, 1148, 5880, 9744, 5040, 0, 132, 7228, 64464, 192984, 230400, 95040, 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160, 0, 1430, 300476, 7043814, 51622600, 165293700, 259518600, 196756560, 57657600
Offset: 0
Examples
A(3,1) = 5: [||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||]. . A(2,2) = 4: ._______. ._______. ._______. ._______. | | | | | | | | | | | |___| | | |___| |___|___| |_______| | | | | | | | | | | | |___|___| |___|___| |_______| |___|___|. . Triangle T(n,k) begins: 1 0, 1; 0, 2, 4; 0, 5, 29, 30; 0, 14, 184, 486, 336; 0, 42, 1148, 5880, 9744, 5040; 0, 132, 7228, 64464, 192984, 230400, 95040; 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160; ...
Links
- Alois P. Heinz, Rows n = 0..135, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[ A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A237018(n,k-i).