cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255984 Decimal expansion of sqrt(3*Pi/2), the value of an oscillatory integral.

Original entry on oeis.org

2, 1, 7, 0, 8, 0, 3, 7, 6, 3, 6, 7, 4, 8, 0, 2, 9, 7, 8, 0, 8, 9, 0, 4, 3, 8, 8, 1, 8, 7, 2, 3, 8, 7, 3, 0, 3, 6, 1, 6, 3, 2, 6, 6, 8, 4, 3, 5, 3, 6, 3, 7, 7, 8, 0, 9, 2, 8, 6, 3, 6, 9, 8, 3, 3, 1, 1, 1, 0, 4, 6, 1, 5, 8, 5, 8, 8, 8, 7, 1, 8, 5, 7, 5, 0, 3, 4, 8, 8, 4, 4, 7, 0, 4, 3, 4, 6, 5, 4, 1, 2, 8, 9
Offset: 1

Views

Author

Jean-François Alcover, Mar 13 2015

Keywords

Examples

			2.17080376367480297808904388187238730361632668435363778...
		

Crossrefs

Cf. A197723 (3*Pi/2).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(3*Pi(R)/2); // G. C. Greubel, Feb 28 2019
    
  • Maple
    evalf[120](sqrt(3*Pi/2)); # Muniru A Asiru, Mar 01 2019
  • Mathematica
    RealDigits[Sqrt[3*Pi/2], 10, 103]//First
  • PARI
    sqrt(3*Pi/2) \\ Charles R Greathouse IV, Apr 20 2016
    
  • Sage
    numerical_approx(sqrt(3*pi/2), digits=100) # G. C. Greubel, Feb 28 2019

Formula

Limit_{p -> infinity} (integral_{0..infinity} abs(sin(t)/t)^p dt) = sqrt(3*Pi/2).