A255984 Decimal expansion of sqrt(3*Pi/2), the value of an oscillatory integral.
2, 1, 7, 0, 8, 0, 3, 7, 6, 3, 6, 7, 4, 8, 0, 2, 9, 7, 8, 0, 8, 9, 0, 4, 3, 8, 8, 1, 8, 7, 2, 3, 8, 7, 3, 0, 3, 6, 1, 6, 3, 2, 6, 6, 8, 4, 3, 5, 3, 6, 3, 7, 7, 8, 0, 9, 2, 8, 6, 3, 6, 9, 8, 3, 3, 1, 1, 1, 0, 4, 6, 1, 5, 8, 5, 8, 8, 8, 7, 1, 8, 5, 7, 5, 0, 3, 4, 8, 8, 4, 4, 7, 0, 4, 3, 4, 6, 5, 4, 1, 2, 8, 9
Offset: 1
Examples
2.17080376367480297808904388187238730361632668435363778...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- David H. Bailey and Jonathan M. Borwein, Experimental computation with oscillatory integrals.
- Index entries for transcendental numbers
Crossrefs
Cf. A197723 (3*Pi/2).
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(3*Pi(R)/2); // G. C. Greubel, Feb 28 2019
-
Maple
evalf[120](sqrt(3*Pi/2)); # Muniru A Asiru, Mar 01 2019
-
Mathematica
RealDigits[Sqrt[3*Pi/2], 10, 103]//First
-
PARI
sqrt(3*Pi/2) \\ Charles R Greathouse IV, Apr 20 2016
-
Sage
numerical_approx(sqrt(3*pi/2), digits=100) # G. C. Greubel, Feb 28 2019
Formula
Limit_{p -> infinity} (integral_{0..infinity} abs(sin(t)/t)^p dt) = sqrt(3*Pi/2).