A256012 Number of partitions of n into distinct parts that are not squarefree.
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 0, 3, 2, 1, 0, 4, 3, 1, 2, 5, 4, 2, 2, 6, 5, 3, 2, 9, 7, 4, 4, 11, 8, 5, 5, 13, 13, 7, 7, 17, 17, 9, 9, 22, 20, 15, 12, 27, 26, 19, 15, 33, 33, 23, 23, 41, 41, 30, 29, 49, 51, 39, 35, 65, 63, 50, 47, 79
Offset: 0
Keywords
Examples
First nonsquarefree numbers: 4,8,9,12,16,18,20,24,25,27,28, ... hence a(20) = #{20, 16+4, 12+8} = 3; a(21) = #{12+9, 9+8+4} = 2; a(22) = #{18+4} = 1; a(23) = #{ } = 0; a(24) = #{24, 20+4, 16+8, 12+8+4} = 4; a(25) = #{25, 16+9, 12+9+4} = 3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a256012 = p a013929_list where p _ 0 = 1 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(i*(i+1)/2
n or issqrfree(i), 0, b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..100); # Alois P. Heinz, Jun 02 2015 -
Mathematica
b[n_, i_] := b[n, i] = If[i*(i+1)/2
n || SquareFreeQ[i], 0, b[n-i, i-1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
Formula
G.f.: Product_{k>=1} (1 + x^k)/(1 + mu(k)^2*x^k), where mu(k) is the Moebius function (A008683). - Ilya Gutkovskiy, Dec 30 2016
Comments