cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256064 Number T(n,k) of rooted trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 4, 18, 16, 0, 9, 89, 201, 125, 0, 20, 418, 1830, 2720, 1296, 0, 48, 1962, 14845, 39720, 43580, 16807, 0, 115, 9268, 114624, 492276, 934455, 809760, 262144, 0, 286, 44375, 866148, 5613775, 16413510, 23991063, 17152163, 4782969
Offset: 1

Views

Author

Alois P. Heinz, Mar 13 2015

Keywords

Examples

			T(3,2) = 3:
  o    o      o
  |    |     / \
  1    2    1   2
  |    |
  2    1
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,    3;
  0,   4,   18,     16;
  0,   9,   89,    201,    125;
  0,  20,  418,   1830,   2720,   1296;
  0,  48, 1962,  14845,  39720,  43580,  16807;
  0, 115, 9268, 114624, 492276, 934455, 809760, 262144;
  ...
		

Crossrefs

Columns k=0-1 give: A063524 (for n>0), A000081 (for n>1):
Main diagonal gives: A000272 (for n>0).
T(2n+1,n) gives A309994.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n-1), n=1..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n < 2, n, (Sum[Sum[d*A[d, k], {d, Divisors[j]}]* A[n - j, k]*k, {j, 1, n - 1}])/(n - 1)];
    T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 07 2020, from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A242249(n,k-i).