A256064 Number T(n,k) of rooted trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
1, 0, 1, 0, 2, 3, 0, 4, 18, 16, 0, 9, 89, 201, 125, 0, 20, 418, 1830, 2720, 1296, 0, 48, 1962, 14845, 39720, 43580, 16807, 0, 115, 9268, 114624, 492276, 934455, 809760, 262144, 0, 286, 44375, 866148, 5613775, 16413510, 23991063, 17152163, 4782969
Offset: 1
Examples
T(3,2) = 3: o o o | | / \ 1 2 1 2 | | 2 1 Triangle T(n,k) begins: 1; 0, 1; 0, 2, 3; 0, 4, 18, 16; 0, 9, 89, 201, 125; 0, 20, 418, 1830, 2720, 1296; 0, 48, 1962, 14845, 39720, 43580, 16807; 0, 115, 9268, 114624, 492276, 934455, 809760, 262144; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d* A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1)) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n-1), n=1..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n < 2, n, (Sum[Sum[d*A[d, k], {d, Divisors[j]}]* A[n - j, k]*k, {j, 1, n - 1}])/(n - 1)]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 07 2020, from Maple *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A242249(n,k-i).