A242249
Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 7, 15, 26, 40, 57, 77, ...
0, 4, 26, 82, 188, 360, 614, 966, ...
0, 9, 107, 495, 1499, 3570, 7284, 13342, ...
0, 20, 458, 3144, 12628, 37476, 91566, 195384, ...
0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
Columns k=0-10 give:
A063524,
A000081,
A000151,
A006964,
A052763,
A052788,
A246235,
A246236,
A246237,
A246238,
A246239.
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
-
\\ ColGf gives column generating function
ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018
A319254
Array read by antidiagonals: T(n,k) is the number of series-reduced rooted trees with n leaves of k colors.
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 6, 10, 5, 5, 10, 28, 40, 12, 6, 15, 60, 156, 170, 33, 7, 21, 110, 430, 948, 785, 90, 8, 28, 182, 965, 3396, 6206, 3770, 261, 9, 36, 280, 1890, 9376, 28818, 42504, 18805, 766, 10, 45, 408, 3360, 21798, 97775, 256172, 301548, 96180, 2312
Offset: 1
Array begins:
==================================================================
n\k| 1 2 3 4 5 6 7
---+--------------------------------------------------------------
1 | 1 2 3 4 5 6 7 ...
2 | 1 3 6 10 15 21 28 ...
3 | 2 10 28 60 110 182 280 ...
4 | 5 40 156 430 965 1890 3360 ...
5 | 12 170 948 3396 9376 21798 44856 ...
6 | 33 785 6206 28818 97775 269675 642124 ...
7 | 90 3770 42504 256172 1068450 3496326 9632960 ...
8 | 261 18805 301548 2357138 12081605 46897359 149491104 ...
9 | 766 96180 2195100 22253672 140160650 645338444 2379859608 ...
...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Sep 17 2018
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
Table[A[n, 1 + d - n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Sep 11 2019, after Alois P. Heinz *)
-
\\ here R(n,k) gives k'th column as a vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v}
{my(T=Mat(vector(8, k, R(8, k)~))); for(n=1, #T~, print(T[n,]))} \\ Andrew Howroyd, Sep 15 2018
A319376
Triangle read by rows: T(n,k) is the number of lone-child-avoiding rooted trees with n leaves of exactly k colors.
Original entry on oeis.org
1, 1, 1, 2, 6, 4, 5, 30, 51, 26, 12, 146, 474, 576, 236, 33, 719, 3950, 8572, 8060, 2752, 90, 3590, 31464, 108416, 175380, 134136, 39208, 261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032, 766, 94648, 1908858, 14047288, 49885320, 95715728, 101799712, 56555904, 12818912
Offset: 1
Triangle begins:
1;
1, 1;
2, 6, 4;
5, 30, 51, 26;
12, 146, 474, 576, 236;
33, 719, 3950, 8572, 8060, 2752;
90, 3590, 31464, 108416, 175380, 134136, 39208;
261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032;
...
From _Gus Wiseman_, Dec 31 2020: (Start)
The 12 trees counted by row n = 3:
(111) (112) (123)
(1(11)) (122) (1(23))
(1(12)) (2(13))
(1(22)) (3(12))
(2(11))
(2(12))
(End)
The unlabeled version, counting inequivalent leaf-colorings of lone-child-avoiding rooted trees, is
A330465.
Lone-child-avoiding rooted trees are counted by
A001678 (shifted left once).
Labeled lone-child-avoiding rooted trees are counted by
A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are
A291636.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
T:= (n, k)-> add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 18 2018
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*A[n, i], {i, 1, k}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],1Gus Wiseman, Dec 31 2020 *)
-
\\ here R(n,k) is k-th column of A319254.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}
A256068
Number T(n,k) of rooted identity trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 2, 14, 16, 0, 3, 60, 174, 125, 0, 6, 254, 1434, 2464, 1296, 0, 12, 1087, 10746, 33362, 40455, 16807, 0, 25, 4742, 77556, 388312, 816535, 763104, 262144, 0, 52, 21020, 551460, 4191916, 13617210, 21501684, 16328620, 4782969
Offset: 1
T(4,2) = 14:
: 0 0 0 0 0 0 0 0
: | | | | | | | |
: 1 1 2 2 2 1 1 2
: | | | | | | / \ / \
: 1 2 1 2 1 2 1 2 1 2
: | | | | | |
: 2 1 1 1 2 1
:
: 0 0 0 0 0 0
: / \ / \ / \ / \ / \ / \
: 1 1 2 1 1 2 2 2 1 2 2 1
: | | | | | |
: 2 1 1 1 2 2
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 3;
0, 2, 14, 16;
0, 3, 60, 174, 125;
0, 6, 254, 1434, 2464, 1296;
0, 12, 1087, 10746, 33362, 40455, 16807;
0, 25, 4742, 77556, 388312, 816535, 763104, 262144;
...
Main diagonal gives:
A000272 (for n>0).
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n-1), n=1..10);
-
A[n_, k_] := A[n, k] = If[n < 2, n, Sum[A[n - j, k] Sum[k A[d, k] d * (-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n - 1}]/(n - 1)];
T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)
A141610
Number of rooted trees with n points and exactly k specified colors: C(n,k), 1<=n, 1<=k<=n.
Original entry on oeis.org
1, 1, 2, 2, 10, 9, 4, 44, 102, 64, 9, 196, 870, 1304, 625, 20, 876, 6744, 18200, 20080, 7776, 48, 4020, 50421, 218260, 416500, 362322, 117649, 115, 18766, 371676, 2427600, 7133655, 10465290, 7503328, 2097152, 286, 89322, 2731569, 25919692, 110136425, 242427438, 288002582, 175481056, 43046721
Offset: 1
C(n,1) is the number of rooted trees with n points (A000081). C(n,n)=n^{n-1}. C(3,2)=10 is the number of rooted trees with three points and two colors: AAB, ABB, ABA, BAA, BAB, BBA, A(BB), A(AB), B(AA), B(AB), where ABC is a rooted tree with A the root, B attached to A and C; A(BC) is a rooted tree with A the root, A attached to B and C.
1;
1, 2;
2, 10, 9;
4, 44, 102, 64;
9, 196, 870, 1304, 625;
20, 876, 6744, 18200, 20080, 7776;
...
-
b:= proc(n, k) option remember; `if`(n<2, k*n, (add(add(b(d, k)*
d, d=numtheory[divisors](j))*b(n-j, k), j=1..n-1))/(n-1))
end:
C:= (n, k)-> add(b(n, k-j)*binomial(k, j)*(-1)^j, j=0..k):
seq(seq(C(n, k), k=1..n), n=1..10); # Alois P. Heinz, Dec 11 2020
-
p[a_List]:=a;p[a_List,b_List,c___List]:=If[Length[a]
<=Length[b],p[PadRight[a,Length[b]]+b,c],p[b,a,c]];
c[i_,j_]:=If[iJean-François Alcover, Jan 04 2021, after Alois P. Heinz *)
-
\\ here U(N, m) is adaptation of A000081 for m colors.
U(N, m)={my(A=vector(N, j, m)); for(n=1, N-1, A[n+1] = sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1])/n); A}
M(n)={my(v=vector(n, i, U(n,i)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n,][1..n]))} \\ Andrew Howroyd, Sep 15 2018
A309994
Number of forests of rooted trees with 2n colored nodes using exactly n colors.
Original entry on oeis.org
1, 2, 89, 14845, 5613775, 3809941836, 4073969863427, 6316651717425358, 13407079935176225215, 37344967651943608528498, 132181958309965092862822183, 579566807739313784043087337938, 3083812115454145185391757131500066, 19577110356940490275990571617295644659
Offset: 0
-
b:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*b(d, k),
d=numtheory[divisors](j))*b(n-j, k)*k, j=1..n-1))/(n-1))
end:
a:= n-> add(b(2*n+1, n-i)*(-1)^i*binomial(n, i), i=0..n):
seq(a(n), n=0..15);
-
b[n_, k_] := b[n, k] = If[n < 2, n, Sum[Sum[d*b[d, k], {d, Divisors[j]}]*b[n-j, k]*k, {j, 1, n-1}]/(n-1)];
a[n_] := Sum[b[2*n+1, n-i]*(-1)^i*Binomial[n, i], {i, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 15 2022, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments