cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360660 Number of inequivalent n X n {0,1} matrices modulo permutation of the rows, with exactly n 1's.

Original entry on oeis.org

1, 1, 4, 20, 133, 1027, 9259, 94033, 1062814, 13176444, 177427145, 2573224238, 39924120823, 658921572675, 11513293227271, 212109149134617, 4105637511110979, 83238756058333277, 1762856698153603049, 38905470655863251479, 892840913430059075405
Offset: 0

Views

Author

Alois P. Heinz, Feb 15 2023

Keywords

Comments

Also the number of multisets of n words of length n over binary alphabet where the first letter occurs n times. E.g., a(2) = 4: {aa,bb}, {ab,ab}, {ab,ba}, {ba,ba}.

Examples

			a(3) = 20: [111/000/000], [110/100/000], [110/010/000], [110/001/000], [101/100/000], [101/010/000], [101/001/000], [100/100/100], [100/100/010], [100/100/001], [100/011/000], [100/010/010], [100/010/001], [100/001/001], [011/010/000], [011/001/000], [010/010/010], [010/010/001], [010/001/001], [001/001/001].
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    a:= n-> coeff(g(n$3), x, n):
    seq(a(n), n=0..20);
  • Mathematica
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
    a[n_] := SeriesCoefficient[g[n, n, n], {x, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
    Table[SeriesCoefficient[Product[1/(1 - x^k)^Binomial[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 15 2025 *)

Formula

a(n) = A220886(n,n).
a(n) = [x^n] Product_{k=1..n} 1/(1 - x^k)^binomial(n,k). - Vaclav Kotesovec, Apr 15 2025

A256069 Number T(n,k) of inequivalent n X n matrices with entry set {1,...,k}, where equivalence means permutations of rows or columns; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 0, 1, 34, 633, 0, 1, 315, 89544, 7520386, 0, 1, 5622, 64780113, 79587235420, 20435529209470, 0, 1, 251608, 302752112913, 9177112514843320, 28079504654455279395, 19740907671252532135134
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2015

Keywords

Examples

			T(2,2) = 5:
  [1 1]  [1 2]  [1 2]  [1 1]  [1 2]
  [1 2]  [2 2]  [1 2]  [2 2]  [2 1].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,    5;
  0, 1,   34,      633;
  0, 1,  315,    89544,     7520386;
  0, 1, 5622, 64780113, 79587235420, 20435529209470;
		

Crossrefs

Cf. A246106.
Main diagonal gives A256070.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [[]],
          `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
           b(n-i*j, i-1))[], j=1..n/i)]))
        end:
    A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..8);

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A246106(n,k-i).
Showing 1-2 of 2 results.