A256248 Indices of powers of two in A055744 (the sequence of n that have the same prime power set as phi(n)).
1, 2, 3, 4, 6, 10, 14, 20, 29, 41, 57, 79, 110, 153, 210, 286, 392, 534, 723, 982, 1330, 1790, 2415, 3249, 4359, 5838, 7824, 10457, 13949, 18581, 24724, 32848, 43568, 57723, 76429, 101095, 133599, 176414, 232772, 306920, 404256, 532034, 699655, 919551, 1207627
Offset: 1
Keywords
Examples
The first terms of A055744 are 1, 4, 8, 16, 18, 32, among which 18 is the only integer that is not a power of 2. Thus this sequence starts with 1, 2, 3, 4, 6.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..50
- Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012.
Programs
-
Haskell
a256248 n = a256248_list !! (n-1) a256248_list = filter ((== 1) . a209229 . a055744) [1..] -- Reinhard Zumkeller, Jun 01 2015
-
Mathematica
t = Select[Range@ 1000000, First /@ FactorInteger@# == First /@ FactorInteger@ EulerPhi@ # &]; f[n_] := Block[{pf = FactorInteger@ n, p2}, p2 = First@ First@ pf; If[Length@ pf == 1 && First@ First@ pf == 2, Last@ First@ pf, 0]]; {1}~Join~Flatten@ Position[f /@ t, n_ /; n > 0] (* Michael De Vlieger, Mar 21 2015 *)
-
PARI
lista(nn) = {nb = 0; for (n=1, nn, if (factor(n)[, 1]==factor(eulerphi(n))[, 1], nb++; if (n == 2^valuation(n, 2), print1(nb, ", "));););}
Extensions
a(30)-a(45) from Hiroaki Yamanouchi, Mar 31 2015
Comments