A256253 Number of successive odd nonprimes A014076 and number of successive odd primes A065091, interleaved.
1, 3, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 1, 6, 1, 1, 1, 2, 2, 4, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 2, 1, 2, 5, 1, 5, 1, 1, 2, 1, 1, 2, 2, 4, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 4, 1, 6, 1, 1, 2, 1, 1, 6, 1, 2, 1, 4, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2
Offset: 1
Keywords
Examples
Consider an irregular array in which the odd-indexed rows list successive odd nonprimes (A014076) and the even-indexed rows list successive odd primes (A065091), in the sequence of odd numbers (A005408), as shown below: 1; 3, 5, 7; 9; 11, 13; 15; 17; 19; 21, 23; 25, 27; 39, 31; ... a(n) is the length of the n-th row. . Illustration of the first 16 regions of the diagram of the symmetric representation of odd nonprimes (A014076) and of odd primes (A065091): . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 31 . |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | | 29 . | | |_ _ _ _ _ _ _ _ _ _ _ | | | 23 . | | | |_ _ _ _ _ _ _ _ _ | | | | 19 . | | | |_ _ _ _ _ _ _ _ | | | | | 17 . | | | | |_ _ _ _ _ _ | | | | | | 13 . | | | | |_ _ _ _ _ | | | | | | | 11 . | | | | | |_ _ _ | | | | | | | | 7 . | | | | | |_ _ | | | | | | | | | 5 . A014076 | | | | | |_ | | | | | | | | | | 3 . 1 | | | | | |_|_|_|_| | | | | | | | A065091 . 9 | | | | |_ _ _ _ _|_|_| | | | | | . 15 | | | |_ _ _ _ _ _ _ _|_|_| | | | . 21 | | |_ _ _ _ _ _ _ _ _ _ _|_| | | . 25 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | | . 27 |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_| . a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..10: . . |_ _ _ . |_ _ . |_ _ . |_ . | . |_ _ . The sequence begins: 1,3,1,2,1,2,1,1,2,2,... .
Programs
-
PARI
lista(nn) = {my(nb = 1, isp = 0); forstep (n=3, nn, 2, if (bitxor(isp, ! isprime(n)), nb++, print1(nb, ", "); nb = 1; isp = ! isp););} \\ Michel Marcus, May 25 2015
Formula
a(n) = A256252(n-1), n >= 3.
Comments