A256319 Decimal expansion of Sum_{k>=0} (zeta(2k)/(2k+1))*(3/4)^(2k) (negated).
0, 7, 6, 0, 9, 9, 8, 2, 7, 1, 2, 9, 7, 1, 3, 4, 0, 0, 6, 4, 1, 5, 1, 3, 2, 1, 1, 5, 4, 1, 7, 4, 5, 8, 3, 5, 7, 3, 0, 8, 5, 2, 9, 8, 2, 2, 6, 1, 4, 5, 1, 3, 9, 0, 1, 0, 9, 8, 3, 6, 1, 4, 6, 0, 0, 2, 7, 6, 5, 8, 5, 9, 8, 6, 5, 6, 1, 0, 7, 2, 4, 9, 9, 2, 5, 9, 0, 2, 2, 3, 6, 4, 8, 0, 5, 9, 9, 8, 5, 5, 8, 2, 5
Offset: 0
Examples
-0.0760998271297134006415132115417458357308529822614513901...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- H. M. Srivasata, M. L. Glasser, Victor S. Adamchik, Some Definite Integrals Associated with the Riemann Zeta Function
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/(3*Pi(R)) - Log(2)/4; // G. C. Greubel, Aug 25 2018
-
Mathematica
Join[{0}, RealDigits[Catalan/(3 Pi) - Log[2]/4, 10, 102] // First]
-
PARI
suminf(k=0, (zeta(2*k)/(2*k+1))*(3/4)^(2*k)) \\ Michel Marcus, Mar 23 2015
-
PARI
default(realprecision, 100); Catalan/(3*Pi) - log(2)/4 \\ G. C. Greubel, Aug 25 2018
Formula
Equals G/(3*Pi) - log(2)/4, where G is Catalan's constant.