cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256319 Decimal expansion of Sum_{k>=0} (zeta(2k)/(2k+1))*(3/4)^(2k) (negated).

Original entry on oeis.org

0, 7, 6, 0, 9, 9, 8, 2, 7, 1, 2, 9, 7, 1, 3, 4, 0, 0, 6, 4, 1, 5, 1, 3, 2, 1, 1, 5, 4, 1, 7, 4, 5, 8, 3, 5, 7, 3, 0, 8, 5, 2, 9, 8, 2, 2, 6, 1, 4, 5, 1, 3, 9, 0, 1, 0, 9, 8, 3, 6, 1, 4, 6, 0, 0, 2, 7, 6, 5, 8, 5, 9, 8, 6, 5, 6, 1, 0, 7, 2, 4, 9, 9, 2, 5, 9, 0, 2, 2, 3, 6, 4, 8, 0, 5, 9, 9, 8, 5, 5, 8, 2, 5
Offset: 0

Views

Author

Jean-François Alcover, Mar 23 2015

Keywords

Examples

			-0.0760998271297134006415132115417458357308529822614513901...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Catalan(R)/(3*Pi(R)) - Log(2)/4; // G. C. Greubel, Aug 25 2018
  • Mathematica
    Join[{0}, RealDigits[Catalan/(3 Pi) - Log[2]/4, 10, 102] // First]
  • PARI
    suminf(k=0, (zeta(2*k)/(2*k+1))*(3/4)^(2*k)) \\ Michel Marcus, Mar 23 2015
    
  • PARI
    default(realprecision, 100); Catalan/(3*Pi) - log(2)/4 \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals G/(3*Pi) - log(2)/4, where G is Catalan's constant.