cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256358 Decimal expansion of log(sqrt(Pi/2)).

Original entry on oeis.org

2, 2, 5, 7, 9, 1, 3, 5, 2, 6, 4, 4, 7, 2, 7, 4, 3, 2, 3, 6, 3, 0, 9, 7, 6, 1, 4, 9, 4, 7, 4, 4, 1, 0, 7, 1, 7, 8, 5, 8, 9, 7, 3, 3, 9, 2, 7, 7, 5, 2, 8, 1, 5, 8, 6, 9, 6, 4, 7, 1, 5, 3, 0, 9, 8, 9, 3, 7, 2, 0, 7, 3, 9, 5, 7, 5, 6, 5, 6, 8, 2, 0, 8, 8, 8, 7, 9, 9, 7, 1, 6, 3, 9, 5, 3, 5, 5, 1, 0, 0, 8, 0, 0, 0, 4
Offset: 0

Views

Author

Jean-François Alcover, Mar 26 2015

Keywords

Comments

Equals the derivative of the Dirichlet eta function at x=0. - Stanislav Sykora, May 27 2015

Examples

			0.22579135264472743236309761494744107178589733927752815869647153...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Sqrt[Pi/2]], 10, 105] // First
    RealDigits[DirichletEta'[0], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
  • PARI
    log(sqrt(Pi/2)) \\ G. C. Greubel, Jan 09 2017

Formula

Given the harmonic sum G(x) = Sum_{k>=1} (-1)^k*log(k)*exp(-k^2*x), lim_{x->0} G(x) = log(sqrt(Pi/2)).
Integral_{x=0..oo} G(x) dx = (Pi^2/12)*log(2) + zeta'(2)/2 = (Pi^2/12)*(EulerGamma + log(4*Pi) - 12*log(Glaisher)) = 0.1013165781635...
G'(0) = 7*zeta'(-2) = -7*zeta(3)/(4*Pi^2) = -0.2131391994...
Equals Integral_{-oo..+oo} -log(1/2 + i*z)/(exp(-Pi*z) + exp(Pi*z)) dz, where i is the imaginary unit. - Peter Luschny, Apr 08 2018
Equals Sum_{n>=0} Sum_{m>=1} (-1)^(m+n) * log(m+n)/(m+n) (Efthimiou, 2010). - Amiram Eldar, Apr 09 2022
Equals A094642/2. - R. J. Mathar, Jun 15 2023