cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349220 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^3.

Original entry on oeis.org

0, 5, 9, 7, 0, 5, 9, 0, 6, 1, 6, 0, 1, 9, 5, 3, 5, 8, 3, 6, 3, 4, 2, 9, 2, 6, 6, 2, 8, 7, 9, 2, 5, 6, 7, 8, 3, 1, 6, 9, 2, 6, 8, 7, 3, 1, 5, 6, 5, 1, 5, 9, 6, 9, 2, 3, 3, 2, 5, 1, 1, 7, 8, 0, 5, 2, 4, 0, 1, 0, 0, 5, 6, 0, 1, 1, 6, 2, 2, 8, 0, 2, 3, 4, 6, 3, 7, 0, 2, 4, 9, 7, 1, 6, 9, 2, 8, 9, 5, 1, 8, 7, 0, 8, 3, 1, 8, 1, 9, 6, 7, 0, 1, 0, 8, 2, 1, 6, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 11 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 3.

Examples

			0.0597059061601953583634292662879256783169268731565...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Log[2] Zeta[3] + 3 Zeta'[3])/4, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^3) \\ Michel Marcus, Nov 11 2021

Formula

Equals (log(2) * zeta(3) + 3 * zeta'(3)) / 4.

A271533 Decimal expansion of the derivative of the Dirichlet function eta(z) at z = -1.

Original entry on oeis.org

2, 6, 5, 2, 1, 4, 3, 7, 0, 9, 1, 4, 7, 0, 4, 3, 5, 1, 1, 6, 9, 3, 4, 8, 2, 7, 3, 5, 7, 5, 6, 1, 6, 4, 0, 5, 6, 0, 0, 2, 7, 5, 7, 6, 2, 8, 8, 5, 5, 2, 0, 2, 6, 6, 2, 9, 2, 6, 7, 3, 5, 8, 2, 5, 7, 4, 2, 8, 1, 2, 2, 5, 0, 0, 9, 8, 3, 3, 2, 7, 9, 7, 4, 3, 2, 8, 7, 5, 2, 5, 3, 3, 2, 0, 5, 3, 3, 7, 0, 7, 6, 7, 7, 9, 7
Offset: 0

Views

Author

Stanislav Sykora, Apr 09 2016

Keywords

Comments

This entry completes the values of the derivatives eta'(z) at z = 0,1,i,-1,-i (see crossrefs).

Examples

			0.265214370914704351169348273575616405600275762885520266292673582574...
		

Crossrefs

Cf. A074962, A256358 (eta'(0)), A091812 (eta'(1)), A271525 (real(eta'(i))), A271526 (-imag(eta'(i))) .

Programs

  • Mathematica
    RealDigits[3*Log[Glaisher] - Log[2]/3 - 1/4, 10, 120][[1]] (* G. C. Greubel, Apr 09 2016 *)
    RealDigits[DirichletEta'[-1], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
  • PARI
    \\ Derivative of Dirichlet eta function (fails for z=1):
    derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z);
    derdireta(-1) \\ Evaluation

Formula

eta'(-1) = 3*log(A) - log(2)/3 - 1/4, where A = A074962 is the Glaisher-Kinkelin constant.

A349252 Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^4.

Original entry on oeis.org

0, 3, 3, 4, 7, 8, 8, 0, 4, 5, 7, 8, 5, 6, 5, 0, 6, 6, 3, 8, 5, 9, 5, 6, 8, 5, 4, 7, 8, 8, 7, 3, 7, 7, 9, 9, 7, 1, 3, 7, 5, 9, 7, 3, 0, 4, 0, 5, 7, 3, 4, 9, 7, 4, 8, 2, 8, 6, 6, 5, 7, 6, 4, 2, 8, 8, 6, 8, 3, 6, 2, 2, 5, 2, 7, 9, 5, 8, 8, 3, 8, 1, 0, 7, 9, 5, 3, 4, 7, 4, 7, 5, 8, 6, 5, 8, 6, 4, 8, 6, 2, 2, 8, 2, 6, 6, 5, 1, 1, 1, 1, 2, 1, 8, 5, 5, 1, 7, 9, 8, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Comments

First derivative of the Dirichlet eta function at 4.

Examples

			0.0334788045785650663859568547887377997137597304057...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[(Pi^4 Log[2] + 630 Zeta'[4])/720, 10, 120][[1]]}]
  • PARI
    sumalt(k=1, (-1)^k * log(k) / k^4) \\ Michel Marcus, Nov 12 2021

Formula

Equals (Pi^4 * log(2) + 630 * zeta'(4)) / 720.
Showing 1-3 of 3 results.