cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256382 Numbers n such that n-4 and n+4 are semiprimes.

Original entry on oeis.org

10, 18, 29, 30, 42, 53, 61, 73, 78, 81, 89, 90, 91, 115, 119, 125, 137, 138, 162, 165, 173, 181, 198, 205, 209, 210, 213, 217, 222, 258, 263, 291, 295, 299, 305, 323, 325, 330, 331, 390, 399, 407, 411, 441, 449, 450, 462, 477, 485, 489, 493, 497, 501, 515, 523
Offset: 1

Views

Author

Michel Marcus, Mar 27 2015

Keywords

Comments

A117328 is the subsequence of primes.

Crossrefs

Cf. A001358 (semiprimes).
Cf. A117328 (with primes rather than semiprimes).
Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2).
Cf. A256381 (n-3 and n+3), A256383 (n-5 and n+5).

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [6..750] | IsSemiprime(n+4) and IsSemiprime(n-4) ]; // Vincenzo Librandi, Mar 29 2015
  • Mathematica
    Select[Range[600], PrimeOmega[# + 4] == PrimeOmega[# - 4] == 2 &] (* Vincenzo Librandi, Mar 29 2015 *)
    Flatten[Position[Partition[Table[If[PrimeOmega[n]==2,1,0],{n,600}],9,1],?(#[[1]]==#[[9]]==1&),{1},Heads->False]]+4 (* _Harvey P. Dale, Mar 29 2015 *)
  • PARI
    lista(nn,m=4) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););}