A256383 Numbers n such that n-5 and n+5 are semiprimes.
9, 20, 30, 44, 60, 82, 90, 116, 124, 128, 138, 150, 164, 182, 208, 210, 214, 242, 254, 294, 296, 300, 304, 314, 324, 334, 360, 366, 376, 386, 398, 408, 412, 422, 432, 442, 476, 506, 510, 522, 524, 532, 538, 540, 548, 578, 584, 586, 628, 674, 676, 684
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [6..700] | IsSemiprime(n+5) and IsSemiprime(n-5) ]; // Vincenzo Librandi, Mar 29 2015
-
Maple
N:= 1000: # for terms <= N-5 PP:= select(isprime, {seq(i,i=3..N/3,2)}): P:= select(`<=`,PP,floor(sqrt(N))): SP:= {}: for p in P do PP:= select(`<=`,PP,N/p); SP:= SP union map(`*`,PP,p); od: R:= {9} union (map(`+`,SP,5) intersect map(`-`,SP,5)): sort(convert(R,list)); # Robert Israel, Apr 13 2020
-
Mathematica
Select[Range[2, 700], PrimeOmega[# + 5] == PrimeOmega[# - 5] == 2 &] (* Vincenzo Librandi, Mar 29 2015 *)
-
PARI
lista(nn,m=5) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););}
-
PARI
issemi(n)=bigomega(n)==2 list(lim)=my(v=List([9])); forprime(p=5,(lim-5)\3, if(issemi(3*p+10), listput(v,3*p+5))); forprime(p=29,(lim+5)\3, if(issemi(3*p-10), listput(v,3*p-5))); forstep(n=30,lim\=1,6, if(issemi(n-5) && issemi(n+5), listput(v, n))); Set(v) \\ Charles R Greathouse IV, Apr 13 2020
Comments