cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256383 Numbers n such that n-5 and n+5 are semiprimes.

Original entry on oeis.org

9, 20, 30, 44, 60, 82, 90, 116, 124, 128, 138, 150, 164, 182, 208, 210, 214, 242, 254, 294, 296, 300, 304, 314, 324, 334, 360, 366, 376, 386, 398, 408, 412, 422, 432, 442, 476, 506, 510, 522, 524, 532, 538, 540, 548, 578, 584, 586, 628, 674, 676, 684
Offset: 1

Views

Author

Michel Marcus, Mar 27 2015

Keywords

Comments

It appears that there are no primes in this sequence.
If n is odd, one of n+5 and n-5 is divisible by 4, so unless n = 9 it can't be a semiprime. Thus all terms except 9 are even. - Robert Israel, Apr 13 2020

Crossrefs

Cf. A001358 (semiprimes).
Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2).
Cf. A256381 (n-3 and n+3), A256382 (n-4 and n+4).

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [6..700] | IsSemiprime(n+5) and IsSemiprime(n-5) ]; // Vincenzo Librandi, Mar 29 2015
  • Maple
    N:= 1000: # for terms <= N-5
    PP:= select(isprime, {seq(i,i=3..N/3,2)}):
    P:= select(`<=`,PP,floor(sqrt(N))):
    SP:= {}:
    for p in P do
      PP:= select(`<=`,PP,N/p);
      SP:= SP union map(`*`,PP,p);
    od:
    R:= {9} union (map(`+`,SP,5) intersect map(`-`,SP,5)):
    sort(convert(R,list)); # Robert Israel, Apr 13 2020
  • Mathematica
    Select[Range[2, 700], PrimeOmega[# + 5] == PrimeOmega[# - 5] == 2 &] (* Vincenzo Librandi, Mar 29 2015 *)
  • PARI
    lista(nn,m=5) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););}
    
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List([9])); forprime(p=5,(lim-5)\3, if(issemi(3*p+10), listput(v,3*p+5))); forprime(p=29,(lim+5)\3, if(issemi(3*p-10), listput(v,3*p-5))); forstep(n=30,lim\=1,6, if(issemi(n-5) && issemi(n+5), listput(v, n))); Set(v) \\ Charles R Greathouse IV, Apr 13 2020