cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A018893 Blasius sequence: from coefficients in expansion of solution to Blasius's equation in boundary layer theory.

Original entry on oeis.org

1, 1, 11, 375, 27897, 3817137, 865874115, 303083960103, 155172279680289, 111431990979621729, 108511603921116483579, 139360142400556127213655, 230624017175131841824732233, 482197541715276031774659298833
Offset: 0

Views

Author

Stan Richardson (stan(AT)maths.ed.ac.uk)

Keywords

Comments

Number of increasing trilabeled unordered trees. - Markus Kuba, Nov 18 2014

Examples

			A(x) = 1 + 1/6*x^3 + 11/720*x^6 + 25/24192*x^9 + 9299/159667200*x^12 + ...
G.f. = 1 + x + 11*x^3 + 375*x^4 + 27897*x^5 + 3817137*x^6 + ...
		

References

  • H. T. Davis: Introduction to Nonlinear Differential and Integral Equations (Dover 1962), page 403.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[k_] := a[k] = Sum[Binomial[3*k-1, 3*j]*a[j]*a[k-j-1], {j, 0, k-1}]; Table[a[k], {k, 0, 13}] (* Jean-François Alcover, Oct 28 2014 *)

Formula

E.g.f. A(x) satisfies (d^3/dx^3)log(A(x)) = A(x). - Vladeta Jovovic, Oct 24 2003
Lim_{n->infinity} (a(n)/(3*n+2)!)^(1/n) = 0.03269425181024... . - Vaclav Kotesovec, Oct 28 2014
T(z) = log(A(z)) satisfies T'''(z)=exp(T(z)), such that F(z)=T'(z) satisfies a Blasius type equation: F'''(z)-F(z)*F''(z)=0. - Markus Kuba, Nov 18 2014
a(n) = Sum_{v = 0..n-1} binomial(3*n-1, 3*v) * a(v) * a(n-1-v) for n >= 1 with a(0) = 1 (Blasius' recurrence). - Petros Hadjicostas, Aug 01 2019

Extensions

Corrected and extended by Vladeta Jovovic, Oct 24 2003

A309522 Generalized Blasius numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 4, 6, 14, 1, 1, 11, 34, 24, 42, 1, 1, 36, 375, 496, 120, 132, 1, 1, 127, 6306, 27897, 11056, 720, 429, 1, 1, 463, 129256, 3156336, 3817137, 349504, 5040, 1430, 1, 1, 1717, 2877883, 514334274, 3501788976, 865874115, 14873104, 40320, 4862
Offset: 0

Views

Author

Keywords

Comments

The generalized Blasius o.d.e. of order n whose infinite series solution involves row n of this square array appears in Salié (1955). Rows n = 2 and n = 3 of this array appear in Kuba and Panholzer (2014, 2016), who give combinatorial interpretations to the numbers in those two rows.
Eq. (22) in Kuba and Panholzer (2014, p. 23) and Eq. (5) in Kuba and Panholzer (2016, p. 233) are general o.d.e.s for generating infinite sequences of numbers with some combinatorial properties. Even though they bear some similarity to Salié's general o.d.e., it is not clear whether either one can be used to give combinatorial interpretation to the numbers in rows n >= 4 of the current square array.

Examples

			Table A(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
[0] 1, 1,  2,    5,      14,         42,           132, ...  A000108
[1] 1, 1,  2,    6,      24,        120,           720, ...  A000142
[2] 1, 1,  4,   34,     496,      11056,        349504, ...  A002105
[3] 1, 1, 11,  375,   27897,    3817137,     865874115, ...  A018893
[4] 1, 1, 36, 6306, 3156336, 3501788976, 7425169747776, ...
     A260878|
		

Crossrefs

Rows include A000108, A000142, A002105 (shifted), A018893.
Columns include A260878.
Cf. A256522 (Blasius constant), A260876.

Programs

  • Maple
    A := proc(n, k) option remember; if k = 0 then 1 else
    add(binomial(n*k-1, n*v)*A(n, v)*A(n, k-1-v), v=0..k-1) fi end:
    seq(seq(A(n-k, k), k=0..n), n=0..9);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k - 1, n*v]*A[n, v]* A[n, k - 1 - v], {v, 0, k - 1}]];
    Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 26 2019, from Maple *)

Formula

A(n, k) = Sum_{v=0..k-1} binomial(n*k-1, n*v)*A(n, v)*A(n, k-1-v) for k > 0 and A(n, 0) = 1.
A(n, 2) = A260876(n, 2) = binomial(2*n - 1, n) + 1 for n >= 0.
A(n, 3) = A260876(n, 2) + A260876(n, 3) - 1 = (binomial(3*n - 1, 2*n) + 1) * (binomial(2*n - 1, n) + 1) + binomial(3*n - 1, n) for n >= 1.
Showing 1-2 of 2 results.