A256605 Least k such that n+1 is the n-th divisor of k.
3, 4, 20, 12, 84, 120, 360, 360, 3960, 2520, 32760, 27720, 27720, 55440, 942480, 720720, 13693680, 12252240, 12252240, 12252240, 281801520, 232792560, 1163962800, 1163962800, 3491888400, 3491888400, 101264763600, 80313433200, 2489716429200, 4658179125600
Offset: 2
Examples
a(6) = 84 because the divisors of 84 are {1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84} and 7 is the 6th divisor of 84.
Crossrefs
Programs
-
Maple
with(numtheory):for n from 2 to 31 do:ii:=0:for k from 1 to 10^9 while(ii=0) do:x:=divisors(k):n1:=nops(x):if n<=n1 and x[n]=n+1 then ii:=1: printf ( "%d %d \n",n,k):else fi:od:od:
-
Mathematica
nn=20;t=Table[0,{nn}];found=1;n=2;While[found
-
PARI
a(n) = {k = 1; ok = 0; while (!ok, d = divisors(k); if ((#d >= n) && (d[n] == n+1), ok = 1, k++);); k;} \\ Michel Marcus, Apr 04 2015
Comments