A256630 Numbers n such that the decimal expansions of both n and n^2 have 0 as smallest digit and 4 as largest digit.
142201, 1422010, 11141110, 11411110, 11412021, 14220100, 20323421, 21024111, 101203421, 110141011, 110142201, 111411100, 114111100, 114120210, 120013421, 141433102, 142201000, 203234210, 210241110, 1012034210, 1101410011, 1101410110, 1101422010, 1114111000
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fQ[n_] := Block[{c = DigitCount@ n}, And[Plus @@ Take[c, {5, 9}] == 0, c[[4]] > 0, c[[10]] > 0]]; Select[Range@ 10000000, fQ@ # && fQ[#^2] &] (* Michael De Vlieger, Apr 12 2015 *)
-
PARI
is(n) = vecmin(digits(n))==0 && vecmin(digits(n^2))==0 && vecmax(digits(n))==4 && vecmax(digits(n^2))==4
-
Python
from itertools import product A256630_list = [] for l in range(11): for a in ('1','2','3','4'): for b in product('01234',repeat = l): for c in ('0','1','2'): s = a+''.join(b)+c if '0' in s and '4' in s: n = int(s) s2 = set(str(n**2)) if {'0','4'} <= s2 <= {'0','1','2','3','4'}: A256630_list.append(n) print(A256630_list) # Chai Wah Wu, Apr 17 2015
Extensions
More terms from Alois P. Heinz, Apr 16 2015