cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256646 26-gonal pyramidal numbers: a(n) = n*(n+1)*(8*n-7)/2.

Original entry on oeis.org

0, 1, 27, 102, 250, 495, 861, 1372, 2052, 2925, 4015, 5346, 6942, 8827, 11025, 13560, 16456, 19737, 23427, 27550, 32130, 37191, 42757, 48852, 55500, 62725, 70551, 79002, 88102, 97875, 108345, 119536, 131472, 144177, 157675, 171990, 187146, 203167, 220077
Offset: 0

Views

Author

Luciano Ancora, Apr 07 2015

Keywords

Comments

See comments in A256645.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (24th row of the table).

Crossrefs

Partial sums of A255185.
Cf. similar sequences listed in A237616.

Programs

  • Magma
    [n*(n+1)*(8*n-7)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
    
  • Mathematica
    Table[n (n + 1) (8 n - 7)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 27, 102}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
  • SageMath
    [(8*n-7)*binomial(n+1,2) for n in range(51)] # G. C. Greubel, Jul 12 2024

Formula

G.f.: x*(1 + 23*x)/(1 - x)^4.
a(n) = A000292(n) + 23*A000292(n-1).
a(n) = n*A051866(n) - Sum_{i=0..n-1} A051866(i). - Bruno Berselli, Apr 09 2015
Sum_{n>=1} 1/a(n) = 2*(4*(sqrt(2)+1)*Pi - 4*(sqrt(2)-8)*log(2) + 8*sqrt(2)*log(sqrt(2)+2) - 7)/105. - Amiram Eldar, Jan 10 2022
E.g.f.: (1/2)*x*(2 + 25*x + 8*x^2)*exp(x). - G. C. Greubel, Jul 12 2024