cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256668 a(n) = 3*B*C*(n mod A) + 5*A*C*(n mod B) + 2*A*B*(n mod C) with A=7, B=11, C=17.

Original entry on oeis.org

1310, 2620, 3930, 5240, 6550, 7860, 5243, 6553, 7863, 9173, 3938, 5248, 6558, 3941, 5251, 6561, 5253, 6563, 7873, 9183, 6566, 1331, 2641, 3951, 5261, 6571, 7881, 5264, 6574, 7884, 9194, 10504, 5269, 3961, 1344, 2654, 3964, 5274, 6584, 7894
Offset: 1

Views

Author

Aaron Kastel, Apr 07 2015

Keywords

Comments

After 0 it cycles again from 1310 (a(1309)=0 so there are 1309 (A*B*C) terms).
This is another variation on A256496, where a(n) = B*C*(n mod A) + A*C*(n mod B) + A*B*(n mod C), modified to take the values A=7, B=11, C=17 and still maintain the equivalence a(n) mod ABC = n mod ABC.
Here some modification is required (to maintain that equivalence) so that 'BC' + 'AC' + 'AB' = ABC + 1 where 'BC', 'AC' and 'AB' are the coefficients. Therefore, a(n) = 3B*C*(n mod A) + 5A*C*(n mod B) + 2A*B*(n mod C) so that 3*11*17 + 5*7*17 + 2*7*11 =7*11*17 + 1 = 561 + 595 + 154 = 1310.
This is an example with 3 modifications.
a(n) = n for n = 154, 308, 462, 561, 595, 616, 715, 749, 770, 869, 903, 924, 1023, 1057, 1078, 1122, 1156, 1177, 1190, 1211, 1232, 1276.

Crossrefs

Cf. A255818 for an example with 1 modification and A256643 for 2 modifications.

Programs

  • Magma
    A:=7; B:=11; C:=17; [3*B*C*(n mod A)+5*A*C*(n mod B)+2*A*B*(n mod C): n in [1..60]]; // Bruno Berselli, Apr 14 2015
  • Mathematica
    Table[561*Mod[n,7]+595*Mod[n,11]+154*Mod[n,17],{n,40}] (* or *) LinearRecurrence[{-2,-3,-4,-5,-6,-7,-7,-7,-7,-7,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,7,7,7,7,6,5,4,3,2,1},{1310,2620,3930,5240,6550,7860,5243,6553,7863,9173,3938,5248,6558,3941,5251,6561,5253,6563,7873,9183,6566,1331,2641,3951,5261,6571,7881,5264,6574,7884,9194,10504,5269},40]  (* Harvey P. Dale, May 03 2023 *)
  • PARI
    my(A=7, B=11, C=17, nn = A*B*C); vector(nn, n, 3*B*C*(n % A) + 5*A*C*(n % B) + 2*A*B*(n % C)) \\ Michel Marcus, Apr 14 2015
    

Formula

G.f.: -x*(11780*x^31 +34030*x^30 +65440*x^29 +104700*x^28 +150500*x^27 +201530*x^26 +256480*x^25 +306187*x^24 +350651*x^23 +389872*x^22 +423850*x^21 +447350*x^20 +461682*x^19 +468156*x^18 +468082*x^17 +462770*x^16 +453530*x^15 +432510*x^14 +403638*x^13 +368224*x^12 +327578*x^11 +283010*x^10 +235830*x^9 +187348*x^8 +144109*x^7 +106113*x^6 +73360*x^5 +45850*x^4 +26200*x^3 +13100*x^2 +5240*x +1310) / ((x -1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^10 +x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^16 +x^15 +x^14 +x^13 +x^12 +x^11 +x^10 +x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Apr 14 2015